JMB

Large-scale Analysis of the Alu Ya5 and Yb8 Subfamilies and their Contribution to Human Genomic Diversity

Marion L. Carroll¹, Astrid M. Roy-Engel², Son V. Nguyen¹ Abdel-Halim Salem^{1,3}, Erika Vogel², Bethaney Vincent^{1,3} Jeremy Myers^{1,3} Zahid Ahmad^{1,3}, Lan Nguyen¹, Mimi Sammarco¹ W. Scott Watkins⁴ Jurgen Henke⁵, Wojciech Makalowski⁶ Lynn B. Jorde⁴ Prescott L. Deininger^{2,7} and Mark A. Batzer^{1,3*}

¹Departments of Pathology, Genetics Biochemistry and Molecular Biology Stanley S. Scott Cancer Center Neuroscience Center of Excellence Louisiana State University Health Sciences Center, 1901 Perdido Street New Orleans, LA 70112, USA

²Tulane Cancer Center, Department of Environmental Health Sciences Tulane University Health Sciences Center, 1430 Tulane Ave., SL-66 New Orleans, LA 70112, USA

³Department of Biological Sciences Biological Computation and Visualization Center, Louisiana State University, 508 Life Sciences Building, Baton Rouge, LA 70803, USA

⁴Department of Human Genetics University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA

⁵Institut fur Blutgruppenforschung Hohenzollernring 57, D-50501, Koln Germany

⁶National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA

⁷Laboratory of Molecular Genetics Alton Ochsner Medical Foundation 1516 Jefferson Highway, New Orleans LA 70121, USA

*Corresponding author

We have utilized computational biology to screen GenBank for the presence of recently integrated Ya5 and Yb8 Alu family members. Our analysis identified 2640 Ya5 Alu family members and 1852 Yb8 Alu family members from the draft sequence of the human genome. We selected a set of 475 of these elements for detailed analyses. Analysis of the DNA sequences from the individual Alu elements revealed a low level of random mutations within both subfamilies consistent with the recent origin of these elements within the human genome. Polymerase chain reaction assays were used to determine the phylogenetic distribution and human genomic variation associated with each Alu repeat. Over 99% of the Ya5 and Yb8 Alu family members were restricted to the human genome and absent from orthologous positions within the genomes of several non-human primates, confirming the recent origin of these Alu subfamilies in the human genome. Approximately 1% of the analyzed Ya5 and Yb8 Alu family members had integrated into previously undefined repeated regions of the human genome. Analysis of mosaic Yb8 elements suggests gene conversion played an important role in generating sequence diversity among these elements. Of the 475 evaluated elements, a total of 106 of the Ya5 and Yb8 Alu family members were polymorphic for insertion presence/absence within the genomes of a diverse array of human populations. The newly identified Alu insertion polymorphisms will be useful tools for the study of human genomic diversity.

© 2001 Academic Press

Keywords: Alu insertion polymorphism; gene conversion; computational biology

Correspondence address: M. A. Batzer, Department of Biological Sciences, Louisiana State University, 508 Life Sciences Building, Baton Rouge, LA 70803, USA.

Abbreviations used: myr, million years old.

E-mail address of the corresponding author: mbatzer@lsu.edu

Introduction

Alu elements are the most abundant Short INterspersed Elements (SINEs), reaching a copy number of over one million in the human genome,¹ making them the mobile element with the highest copy number. Alu repeats compose greater than 10% of the mass of the human genome. Full-length Alu elements are approximately 300 bp in length and commonly found in introns, 3' untranslated regions of genes, and intergenic genomic regions.2-4 Amplification of Alu elements occurs through the reverse transcription of RNA in a process termed retroposition.5 However, Alu elements have no open reading frames, so they are thought to parasitize the required factors for their amplification from Long Interspersed Elements (LINEs).^{6–8} Although the human genome contains over one million Alu elements, only a few Alu elements, termed "master" or source genes, are retroposition competent.⁹⁻¹³ The crucial factor(s) that determine an Alu as a functional source gene are not fully known. Several factors have been suggested to influence the amplification process, including transcriptional capacity, priming or self-priming for reverse transcription and others.14

Alu elements first appeared in the primate genomes over 65 million years (myr) ago.¹¹ Since then, the amplification of Alu elements within the human genome has been punctuated, with the current rate being at least 100-fold slower than the initial rate of Alu expansion within primate genomes.¹⁵ Throughout Alu evolution, the source gene(s) accumulated mutations that were incorporated into the new copies made, creating new Alu subfamilies. Therefore, the Alu family is composed of a number of distinct subfamilies characterized by a hierarchical series of mutations that result in a series of subfamilies of different ages.^{15–20} Of these subfamilies, almost all of the recently integrated Alu elements within the human genome belong to one of several closely related "young" Alu sub-families: Y, Yc1, Yc2, Ya5, Ya5a2, Ya8, Yb8, and Yb9 with the majority being Ya5 and Yb8 subfamily members.^{9,18,21,22}

The availability of a draft human genomic DNA sequence as a result of the Human Genome Project²³ facilitates the *"in silico"* identification of recently integrated Alu elements from the human genome.^{17,18} This method proves to be less demanding in comparison to older approaches, such as cloning and library screening.^{9,21,24} These recently integrated Alu elements serve as temporal landmarks in the evolution of our genome, and many of them will prove to be useful in the study of human evolution and in the study of the natural history of different regions of the genome. Here, we present an analysis of the human genomic diversity associated with 475 members of the Alu Ya5 and Yb8 subfamilies in the human genome.

Results

Subfamily copy number and sequence diversity

In order to determine the copy number of each subfamily of Alu elements, we searched the draft sequence of the entire human genome for the presence of Alu repeats using oligonucleotide sequences complementary to each of the subfamilies (outlined in the Materials and Methods). Our query of the draft human genome sequence identified 2640 Alu Ya5 subfamily members and 1852 Alu Yb8 subfamily members. Both of these copy numbers are in good agreement with previous estimates of the sizes of these Alu subfamilies based upon high-resolution restriction mapping and computational biology.^{18,21}

A comparison of the nucleotide sequences of all of the Ya5 and Yb8 Alu family members can be found at our website (http://129.81.225.52). In order to determine the time of origin for the respective Ya5 and Yb8 subfamilies, we divided the nucleotide substitutions within the elements in each family into those that occurred in CpG dinucleotides and those that occurred in non-CpG positions. The distinction between types of mutations is made because the CpG dinucleotides mutate at a rate that is about ten times faster than non-CpG positions^{9,25} as a result of the deamination of 5methylcytosine.²⁶ In addition, all insertions, deletions and 5' truncations were excluded from our calculations. A total of 441 non-CpG and 241 CpG mutations occurred within the 231 Alu Ya5 subfamily members used in this analysis. For the 244 Alu Yb8 subfamily members analyzed, a total of 478 non-CpG and 275 CpG mutations were observed. Using a neutral rate of evolution for primate intervening DNA sequences of 0.15% per million years²⁷ and the non-CpG mutation density of 0.799% (441/55,209) within the 231 Ya5 Alu elements yields an estimated age of 5.32 million years for the Ya5 subfamily members. Using only non-CpG mutations in the 244 Yb8 sequences yields an estimate of 5.30 million years old for the Yb8 subfamily (478/60,024). This estimate of age is somewhat higher than the 2.7-4.1 million years previously reported.²¹ However, the previous study of Ya5 and Yb8 Alu family members involved only a small number of elements making the calculated subfamily ages more subject to random statistical fluctuation. Alternatively, the new estimated age based upon non-CpG mutations may be artificially inflated due to sequencing errors in the human draft sequence that may account for an increase in the number of mutations observed.

We can also estimate the ages of each Alu subfamily using CpG-based mutations. The only difference in the estimate is to multiply the CpG mutation density by a mutation rate that is approximately ten times the non-CpG rate as previously described.^{9,25} In this case we calculate an average CpG mutation density for the Ya5 subfamily (241 mutations/11088 CpG bases) or 2.17%, and (275 mutations/11,224 CpG bases) 2.45% for the Yb8 subfamily. Using a neutral rate of evolution for CpG based sequences of 1.5%/million years yields estimates of 1.44 and 1.63 million years old for the Ya5 and Yb8 Alu subfamilies, respectively. Both estimates are consistent with the initiation of the expansion of the Ya5 and Yb8 Alu subfamilies that is roughly coincident with the divergence of humans and African apes.

Inspection of the nucleotide sequences flanking each Ya5 and Yb8 Alu family member shows that most of the elements are flanked by short perfect direct repeats. The direct repeats range in size from 3-23 nucleotides. The observed direct repeats are fairly typical of recently integrated Alu family members.^{7,9} The appearance of truncations within a number of these elements probably occurred as a result of incomplete reverse transcription or improper integration into the genome rather than by post-integration instability. All of the Ya5 and Yb8 Alu family members analyzed have oligo(dA)-rich tails that range in length from six nucleotides to over 60 nucleotides in length. It is also interesting to note that the 3' oligo(dA)-rich tails of many of the elements have accumulated random mutations beginning the process of the formation of simple sequence repeats of varied sequence complexity. The oligo(dA)-rich tails and middle A-rich regions of Alu elements have previously been shown to serve as nuclei for the genesis of simple sequence repeats.28

Alu Y to Yb8 sequence evolution

In our query of the human genome, we identified 88 Alu elements containing one to seven of the eight Yb8 diagnostic nucleotides. These 88 "mosaic" elements were subdivided into Yb1, Yb2, Yb4, Yb5, Yb6 and Yb7 depending on the number of diagnostic changes present (Figure 1(a)). To facilitate identification of the individual elements with different diagnostic mutation combinations, the mosaic elements were numbered consecutively in order of abundance (Yb1.1, Yb1.2, etc., see Figure 1(a)). No evident sequential order of accumulation of the Yb8 diagnostic mutations can be easily discerned. Interpretation becomes complicated due to the fact that four out the eight diagnostic mutations are CpG changes (positions 1, 2, 4 and 6 Figure 1(a)). The Alu Y has three CpG sites (positions 1, 2 and 6) that become TpG in Yb8, and Alu Yb8 has one (position 4). CpG dinucleotides mutate at a rate that is about 9.2 times faster than non-CpG,^{9,25} as a result of the deamination of 5methylcytosine.26 Therefore, it is difficult to know if the presence of a TpG diagnostic mutation is due to a change in the Alu source gene or in the particular individual Alu element being evaluated. Because CpG dinucleotides represent hot spots for mutation, a high proportion of CpG positions in the Y subfamily might have mutated to TpG. This makes discrimination between source gene changes and parallel forward mutations occurring in multiple Y elements at these loci difficult. Therefore, we have eliminated these sites (positions 1, 2 and 6) from our analysis (Figure 1(b)). Position 4 represents a different situation. Because the TpG to CpG mutation occurs at the normal evolutionary rate, it was not eliminated from the analysis. However, some variations may be observed where individual copies might have mutated the position back to a TpG that need to be taken into consideration. Now, a sequential evolution of the appear-

Figure 1. Evolution of the diagnostic nucleotide positions from Y to Yb8 Alu elements. (a) Alignment of the eight Alu Yb8 diagnostic nucleotides and the different Yb1, 2, 3, 4, etc. elements found in the databases. The eight diagnostic nucleotides are indicated in bold at the top for Alu Y, and for Alu Yb8 at the bottom. At position $8_{,}$ – or d represents the absence or presence of the seven nucleotide duplication, respectively. For easy reference, individual elements containing different combinations of the diagnostic mutations were numbered consecutively in order of abundance (Yb1.1, Yb1.2, etc.). The total number of elements found for each subgroup is indicated on the left in parenthesis. Note that no Yb1.1 was found (0). The total number of the Yb8 individual diagnostic sites found in all the intermediate elements is indicated at the bottom. (b) Alignment of the same elements after eliminating the diagnostic sites in Alu Y elements involving CpG to T changes. Commas separate elements within the same Yb group and dashes between different groups, i.e. Yb1.2,7-4.2 represents Yb1.2, Yb1.7 and Yb4.2. The suggested evolutionary order of the occurrence of the changes at the diagnostic sites are indicated at the bottom (#1, #2...).

ance of the diagnostic sites can be obtained, starting with position 3, then 4, 7 and/or 8, and finally position 5 (Figure 1(b)). The mutation at position 3 appears to have occurred first, being the most common single nucleotide change with 15 Yb8 mosaic elements. The other Alu Yb8 mosaic elements with only one diagnostic nucleotide change occur in lower frequencies and may be explained by parallel mutations, post-transcriptional selection,8 or by a forward gene conversion event. The order in which the mutation at positions 7 and 8 (the seven nucleotide duplication) occurred cannot be resolved with these data. Four of the elements (Yb6.2 in Figure 1(b)) do not fit the proposed sequential evolutionary pattern. In this case multiple recombination events would be required to obtain this outcome or some selection occurring at the retroposition process, both highly unlikely. Alternatively, position 5 may be explained by gene conversion events or parallel mutations. The possibility of gene conversion between Alu repeats has been suggested previously.²⁹ In addition, limited amounts of gene conversion between Yb8 Alu elements^{21,30} and extensive levels of short gene conversions in the Ya5 subfamily18 have been previously reported.

Phylogenetic origin

In order to determine the approximate time of origin of each Alu subfamily member (Ya5 and Yb8) in the primate lineage, we amplified a series of human and non-human primate DNA samples using the polymerase chain reaction (PCR) and the oligonucleotide primers shown in Tables 1 and 2. In this assay, genomes that are homozygous for the presence of an Alu element amplify a PCR product about 400 bases in length. Genomes that do not contain the Alu element at a particular chromosomal location amplify a 100 bp fragment, while heterozygous genomes amplify both fragments. Using this approach we investigated the phylogenetic origin of each Alu element. All 231 Ya5 Alu family members were subjected to this analysis and only one element (Ya5NBC42) was present in the orthologous locus from the common chimpanzee genome. For the Yb8 subfamily, 244 elements were assayed with one (Yb8NBC253) being present in the common chimpanzee genome. This suggests that almost all of these Alu elements dispersed within the human genome sometime after the human and African ape divergence and that less than 0.42% (2/475) of the Ya5 and Yb8 Alu subfamily members in the human genome also reside in non-human primate genomes.

Human genomic diversity

In order to determine the human genomic variation associated with each of the Ya5 and Yb8 Alu family members, each element was subjected to PCR amplification (outlined above) on a panel of human DNA samples. The panel was composed of 20 individuals of European origin, 20 African Americans, 20 Greenland Natives or Asians and 20 Egyptians for a total of 80 individuals (160 chromosomes). Using this approach 134 Alu Ya5 (Table 1) and 160 Yb8 (Table 2) subfamily members were monomorphic for the presence of the Alu element, suggesting that these elements integrated in the genome prior to the radiation of extant humans. A total of 28 Ya5 and Yb8 Alu family members appeared heterozygous in all of the individuals that were analyzed, suggesting that they had integrated into previously undefined repeated regions within the human genome as reported previously.31 In the PCR-based assay these elements generate a pre-integration site size product from the duplicate copies of the pre-integration site located throughout the genome along with an Alu filled site from the one pre-integration site sequence that contains the new Alu insertion. These elements were not subjected to any further analysis. An additional six elements were located in other repetitive regions of the genome that were identified computationally and discarded from further analysis. The remaining elements were polymorphic for the presence of an Alu repeat within the genomes of the test panel individuals (Tables 3 and 4). Loci that were polymorphic for the presence/absence of individual Alu insertions were subsequently classified as high, low or intermediate frequency insertion polymorphisms (defined in Tables 1 and 2). The unbiased heterozygosity values (corrected for small sample sizes) for these polymorphic Alu insertions were variable, and approached the theoretical maximum of 50% in several cases. This suggests that many of these Alu insertion polymorphisms will make excellent markers for the study of human population genetics. Approximately 25% (58/231) of the randomly identified Ya5 and 20% (48/244) of the Yb8 Alu family members are polymorphic for insertion presence/absence within the human genome. These results are in good agreement with previous estimates of the percentages of insertion polymorphisms within these two Alu subfamilies.²

The Alu inserts that have been in the genome longest are more likely to approach fixation. Therefore, we might expect to find different levels of sequence divergence for the Alu elements from each insertion frequency class. Using this approach the average number of non-CpG/CpG-based mutations for the Ya5 Alu family was 1.62/1.06, 2.83/0.67, 2.16/0.66 and 2.53/1.0 for the fixed present, high frequency, intermediate frequency and low frequency Alu insertion polymorphisms, respectively. In the case of the Yb8 subfamily the average number of non-CpG/CpG mutations was 1.86/1.16, 5.0/0.6, 2.2/0.66 and 1.7/1.2 for the fixed present, high frequency, intermediate frequency and low frequency Alu insertion polymorphisms, respectively. In all cases the standard deviations for each average were as large or larger than the average number of mutations reflecting the heterogeneity in the dataset. No detectable

difference in the mutation density within each frequency class of Alu insertions was observed. Therefore, our data suggest that any sequence differences between the polymorphic elements and those with fixed presence may be obscured because of the small number of total mutations and sequencing errors (see Discussion).

Discussion

Alu elements account for more than 10% of the mass of the human genome. The majority of Alu elements integrated into the genome early in primate evolution. Only a small number of elements (a few thousand) have amplified in the human genome after the divergence of humans and African apes. Here, we report an investigation of the dispersion and insertion polymorphism of the two largest subfamilies of recently integrated Alu repeats within the human genome. Our copy number estimates of 2640 Ya5 and 1852 Yb8 Alu elements within the draft sequence of the human genome are in fairly good agreement with previous estimates of the sizes of these Alu subfamilies although they both exceed the previously published figures.²¹

Using the mutation density and a neutral mutation rate we were able to estimate the ages of each subfamily as 5.32 million years (myr) old for Ya5 and 5.30 myr old for Yb8 using non-CpGbased estimates and 1.44 myr (Ya5) and 1.71 myr (Yb8) using the CpG mutation density. Each of these reported average ages based upon non-CpG mutation density is substantially higher than those reported previously of about 1 myr and 2.7 to 4.1 myr for the Ya5 and Yb8 subfamilies, while the estimates based upon CpG mutation density compare favorably to those previously reported.^{21,32} If we assume a linear amplification of these Alu subfamilies in the human genome, the oldest elements would be no greater than 10.64 myr old for Ya5 and 10.6 myr old for Yb8 using non-CpG mutation density, or 2.88 myr old for Ya5 and 3.42 myr old for Yb8 using the CpG mutation density. The non-CpG based estimates for the oldest subfamily members appears to be somewhat higher than expected for a group of repeated DNA sequences that largely amplified within the human genome after the divergence of humans and African apes which is thought to have occurred within the last 4-6 myr.²⁷ This discrepancy between the two estimates can be explained by considering sequencing errors as a potential factor influencing our current calculations. In the determination of the non-CpG mutations for the estimation of the Alu subfamily age, sequencing errors would be included in the count as mutations, making the estimated age higher than the actual age for the subfamily. If we assume that the sequencing errors are distributed evenly across the entire Alu sequence, then the number of sequencing errors would be higher in the non-CpG-based estimates than the CpG-based

estimates, since there are more non-CpG (242-246) than CpG (only 44-48) nucleotides in the subfamily consensus sequences. Our observation that the levels of sequence divergence from the subfamily consensus sequences do not effectively correlate with polymorphism levels in the human genome also argues that it will not be beneficial to use sequence divergence from the subfamily consensus sequences as a method for the identification of additional polymorphic members of these Alu subfamilies.

We can also compare the calculated ages of each Alu subfamily based upon CpG mutation density as a whole to the estimated percentages of Alu insertion polymorphisms and copy number to evaluate the contribution that these elements make to human genomic diversity. Here, we report estimated ages of 1.44 myr for the Ya5 subfamily and 1.71 myr for the Yb8 subfamily. The percentage of Alu insertion polymorphisms in each of the subfamilies was 25% for the Ya5 subfamily and 20% for the Yb8 subfamily. The copy numbers of the two subfamilies of Alu elements were also different with 2640 Ya5 Alu elements and 1852 Yb8 elements. When considered together these data indicate that the Ya5 Alu subfamily with both a higher copy number and more insertion polymorphisms has been more successful at amplification within the human genome. In fact, if we assume that the ages of the two subfamilies are about the same the Ya5 subfamily has been about 40% more efficient at amplification in terms of both copy number and the generation of new Alu insertion polymorphisms within the human genome. Although the sample size is presently small, this is also in good agreement with the number of previously reported Ya5 (six) and Yb8 (three) Alu repeats associated with different human diseases (reviewed in ref. 22). In addition, these data also provide compelling support for the simultaneous expansion of multiple Alu subfamilies within the human genome. The reasons for the differential amplification of the two Alu subfamilies remain unknown. However, they likely reside in the ability of each subfamily to produce RNA for retroposition or at some other point in the process of retroposition itself such as the reverse transcription step. Further experiments will be required to determine the precise molecular mechanism(s) leading to the differential expansion of these two Alu subfamilies within the human genome.

Using the non-CpG-based average ages of the Ya5 and Yb8 Alu subfamilies along with a linear amplification rate we can also estimate the number of members from each Alu subfamily that should be present within the orthologous loci of the non-human primate genomes. Using this approach the oldest Alu repeats from each subfamily would be approximately twice the average age. In other words, the Ya5 subfamily would have begun to expand 10.64 myr ago with the Yb8 subfamily having expanded about 10.6 myr ago. If we assume that humans and African apes diverged from each

Product size^d Chr.^c Filled-Human 3' Primer sequence (5'-3') A.T.ª diversity^b 5' Primer sequence (5'-3') Loc. empty Name Accession Ya5NBC2 M28713 CTTTAGACTACAGTTGTGTTAGCCTCTTG CTGCACTTTCCAAATTTTCTACCAC 55 FP 22 710-384 AL023807 ACTGCTTGAAGCTAGAACTTAAGAGACC CTCTTGTCTGCTTCTAGACTTGTGAATAAC 60 FΡ 564-243 Ya5NBC3 6 60 R/R 483-154 Ya5NBC4 AL008629 CTGATGAGAAATCTGCTGCTATTG GCAAACCTCAAACAGGATAAACAC Х 60 2 476-163 Ya5NBC5 AC007363 TAGGATATTACTGTACAAAGCCGTAGATTT GTTTTAAGCTAAGCGTTATTACAAAAGAGT IF FP Ya5NBC6 AC006344 GATTACATCCTGTGATCCTGAAACT GAACATTTGTTCTTTTGTGACTGCT 60 6 539-189 Ya5NBC8 AC006478 ATTAAGCACCAGGAAATTGCCATAC CTAGTAAGGCTAGTCCCATAATTTGAAGTG 55 FP 7 513-196 AC006382 60 FP γ 415-102 Ya5NBC9 CTTCCCTAGGATTTAAGTCACCATAAAGAC TTTTCAACTTGTAACTGTAGAGGACAGGAC 60 FP 20 449-141 Ya5NBC10 AC008725 AAAGCATAAAGAAAAGTACGCCAAC CAATGAAGATATAGAACAGCCCCTA CTCCCTGTCTTCCTAACGTAATTTT 60 FP 2 470-129 Ya5NBC12 AC009307.6 GGAGTCAAAGGTACTTACAACGTCT 22 GTCTGTGACCTGCAACACAAG 60 FP 604-291 Ya5NBC13 AL031302 CTTCCTGTGTATACTTCTCTGCAC Ya5NBC14 AL050342 Alu flanked by other repeats Alu flanked by other repeats 1 AC008676 GAAGATTCAGGTGGACAGAAAAAC 60 502-192 CTTTCCTCAGCTTGGTTTATTCTACTG 5 Ya5NBC15 HF AC008608 CTTAACCAAAATAGTGGACGAGGTT CAGAAGTATTTACTACTCGAACAGTGAGC 65 5 539-229 Ya5NBC16 Ya5NBC17 TATGCTCTGAGAGGTTTTCTAGATCTCTG GAATAGGAGCATCATTCAAGTTCAG 65 FΡ 7 553-232 AC007076 65 HF 495-180 Ya5NBC18 AC008433 AGACCATCTTTAAGAGGAATACCATGT GAAACGTAAATTTGTTAATAAAGTGGTGAC 5 60 FP 433-116 AL109948.1 AGACCTACGTGCCTTACTCACTGT Ya5NBC19 AATCACTGTTACTCATGGGGTATCT 1 60 FP 512-177 Ya5NBC21 AC008482 AGCTGTCGTTCAAATGAGACTTTCT AAGCTCACTCATCAATAAGAACACC 5 55 IF 471-156 Ya5NBC22 AC004519 TCTGTGTTCTTTGAATGTGTATTACTCTTA GAATGTAAAGCTGTAACTTTCCTTTTCAAT 7 60 LF AJ011932 21 595-286 Ya5NBC24 AAAATTGAGAGACGAGGAGAAGGT CCTCATCAATACTGTAACTGTCACAAC 55 FP 538-218 Ya5NBC25 AC004220 GTGAAGGACATGAACAGACACTTCT CACCAACAGTGTAAAAGTGTTCCTA 5 55 FP 21 476-158 Ya5NBC26 AP000311 GGGCTATTCTGATTTTCTTCTTCTC AGAAGAGACATCACTACAGATACTACAGAC 55 IF Ya5NBC27 AC003691 CTGAATACAGGTATCACTGAACAGAAC ACAGTGTAAAGTCTAACCTACCAGAGGAT 11 591-265 55 LF 474-191 Ya5NBC28 AC005862 GGGTACATGTGCAGGTTTCTTATAC GCTAACTGATGAGAACACACAGATACATAG 7 60 FP ? 502-191 Ya5NBC30 AC007159a CTGGCACATAGTAGGTGTTCAATAA GAGTAGTTTGAGTCTGTTTGTAGCAGAG FP 22 Ya5NBC31 AL033543 GTATCTTGTGTGTGTTTCCTAACAAGACTGAG CTCATTTTCACTTATCAGGTCTGTCTC 60 523-238 FP 9 AC006288 GCAATTGCTATCCTTGAGTGTTTC CTCCTAGTCTAGAGTTTTTCCCATTGTATC 60 543-226 Ya5NBC33 FP Х Ya5NBC34 AL031575 CACTCTGATACTTATCTCTGTGCCTGTAT TGAGAGACATCAAACCAGAAATCC 60 494-150 IF Ya5NBC35 AC004534 GAGAAGTACTCAGAGAGGACATCATTT GTAGTCATGGAGGTAAGAAAAGAAGACAC 60 7 515-179 R/R Ya5NBC36 AC004006 ATGAAATAACTCCTAGATTCAGGCTTC AGTTTCTTGTGTTAGTTTCCTTAAATACCT 60 7 515-200 60 IF Х 497-184 Ya5NBC37 AC002476 GCTTGAGGTTTTCATACTACTCTTATCTTT ACTGTATAAGCATTTTCCTCTTTATCTTTC GTACCCTCTAATTTACAGTCATCTCATACC GAACTTCTCTGGCTTGAAAAATCAG 60 LF 7 487-170 Ya5NBC38 AC006033 CTAAACACAGGTTACAGCACCTCTT 60 FP 14 469-152 Ya5NBC39 AC005533 TGGGACTTAGCTGTTTTGGTATCTA Ya5NBC40 AC008887 ATTGATCTCCAACTGATGCCCTA GACAACAGACTTACCCTGCCTATACTATT 58 5 417-105 -55 FP 5 441-128 Ya5NBC41 AC008828 CTCTTTATGGGACTTGACAAGCA GTTCTACATTGCCATAATAGTGTAGGG 55 FP 22 AGTAAGTCCCTCCCCATATGCT GGTCTTTCTAACCCAAAGGTCAC 486-185 Ya5NBC42 AL078621 55 FP 6 539-218 Ya5NBC43 AL096867.7 CCTTTCCTTACTAGACAGTGACAACAT CTTTTAGCCATCTTCTTGGTGTTTG 55 FP AL096840 GTGAGTTTGGGGGATATGGTGAG 1 525-202 Ya5NBC44 CATTCTCTCCTTTGGTCCTCTTTAT IF 60 Ya5NBC45 AL049868 TAGGGTAAGGAATATGTGCTGCTTTAG GTCTCTGAACGACTATGTGAGCAG 20 591-265 AC009466 GATGTGTGAATACTGTGTAGATTCCAG GTAAAGCTTTTGTAGTGCCTAGCTCTTAGT 55 FP 11 405-94 Ya5NBC46 55 526-200 CTCAAGATTGGCCTATAGTCGTTAT AGACACAGGTATCCAGTGAAAGAGT FP Ya5NBC47 AC007227 1 ACTGTTAAGATAGTGAATTTTACTGCTCCA AACTCACACGTGATACAAAATACTCACAGA 55 FP 11 481-176 Ya5NBC48 AC002290 AGCCTGGCCCATGATAAAAA GTTTCATAGATAAGACACTGGCATGTTACT 465-155 Ya5NBC50 AL096829 1 -60 IF 3 437-140 Ya5NBC51 AC008249 ATATTCCAGAAGTTTCCTTACATCTAGTGC AAAGCTTTAAGTCTCCACCATCTCT 53 16 688-371 Ya5NBC52 AC009094 AAGTTGAAGTCCAAAGTCTCATCTG CTTCTTCCCCACTTAAATATCAAGG -60 LF 6 433-130 Ya5NBC54 AL024507 GTTTATGTCAGTAGGAGTTTTCTCGTGTAG TCATTGTATCATCTGCTGTACCTGT

Table 1. Alu Ya5 accession numbers, locations, human diversity, oligonucleotide primers and PCR parameters

Ya5NBC56	AL109767	TCATTGTATCATCTGCTGTACCTGT	AGTCCAACATAGATGTAATTGGAGTTCAGG	60	£.	14	469-148
1 aoinduo/		GAUGIAAAGAGAIGIIGIIGIIAAGIGAAAAAI	ACIGIAGGAGGIAAAIGGAAAGTCAACAGA	60	<u>u</u> _	16	444-126
		TOULUI HACCAAIII CICIIAIIII CA	IALLIGGCIGGALLIGAGITATCTCTTAGG	60	£.	ç	481-141
	AC009594	IGAAIAAICCAGIIGGGGGAG	GIAIAICICIACCGAGACTCAGTTTTTAGC	55	ц.	4	493-180
	ACUU6210	AIGGIAALITCCCICALITGICA	GIAATGTCCTCCATTGTTCATTTG	61	ይ	×	448-115
Ya5NBC67	AC006005	CACACCCCGTATTTTCT	TGCATTCTTGGAGTTTG	58	ይ	7	424-131
Ya5NBC69	AC004053	GGGATCAGTTACAGTGCTTC	ATGCAACGCAACTTAGAACT	50	£	4	359-42
Ya5NBC70	AC004454b	ATCAACGTGGGACATAACCA	TTCAGAAGGCACATTAGTGCT	60	£	4	391-116
Ya5NBC72	HS234H5	CCTTGCTGCATAAAACCTA	TATGACTAATGTGGGGGCTTT	52	đ	9	416-102
Ya5NBC73	AC004454a	GACTATTAATACGAATCCAAAGTACACG	TTTAACTTGGTCCTACCTGTGTGTC	51	£	4	465-129
Ya5NBC76	M96868	ACTCTTTAGTTTGTAAGATGGCAAG	GGTGGGGGGAGTAGCAGAA	60	£	2	735-417
Ya5NBC77	AL008629	TTTTGCCGTTAGTTTTCAGAAG	GGGCAAACCTCAAACAGGAT	60	ı	×	408-83
Ya5NBC78	AC006155	AACTCCAACAGCCACATCCT	TGGTGGGTCAGTATTGAGTGA	09		7	382-66
Ya5NBC80	HS960017	CTCTCCTGTGTCCATACTTCTT	CTGGCATGGAGATTTCTTAC	09	Ę	~	368-47
Ya5NBC81	HU95742	GTGGCAGTGGAGATAGAAAA	ACACTCAATCCATCACCTTT	60	,	16	352-42
Ya5NBC82	AC005217	AGTGCTGGGAAGACCAGT	GCTGGTGCTCTTGACAAA	60	,	2	348-37
Ya5NBC83	AL022101	AGGGAAGTCAGGCAGAAC	CCTTCCCTAGGAGCACAT	55	£		384-106
Ya5NBC87	AL109830	AGTAAATACTGTAAGAGATGTGGAGAGCAC	CACAGCATTAGAGAGAGTTGATGATAG	55	R/R	20	434-201
Ya5NBC89	AC009807	ATCTTCCCGGCATAACCTC	GAGGCCCAAATTTGCTTACA	55	ቲ	ŧ	516-195
Ya5NBC91	AL034378.2	GGTCATGGTTCTTTGCTATTCATTC	GTATTGTAACCCATAGAGCAACCAT	55	R/R	-	531-214
Ya5NBC93	AC010086.1	CCTCTGCCATATGGTATGTTTAGAA	TAGGATGAGGTCAAAAGTGAGAAAC	60	·	≻	610-294
Ya5NBC94	AC008788.1	ATTGTCTTTCCTGTGCTACTCTCAT	CACTTTAGTGGATGCTTATCTTTG	57	£	ഹ	531-201
Ya5NBC95	AC009962	ATTATAGTAATAAATCCTGGAATTGGACCT	GAAATGAATCTATGGGATATGTTTCT	60	£	2	489-148
Ya5NBC96	AC004547	TAGATGAGATAGAGCCATCAAACACTC	GTATTGTAACCCATAGAGCAACCAT	60	뜨	7	509-169
Ya5NBC97	AC004453	GCTCTTTTCTTGTTTTCTGGAAGTG	TGTGAGTGTAAGAACACGTGTAAGAG	55	£	7	442-147
Ya5NBC98	AL049591	TATAGCTAGTAAATGGTAGAGCCAGGA	CTGTCTAAGATAGTGATTGGACCTACTATG	62	۲. ۲	×	504-209
Ya5NBC99	AL031312	TATACACACACACACAGAGAATGACTG	CCTGACTCGAAGTACTGTTTTCTAAG	55	đ	×	515-198
Ya5NBC100	AL035683	TGAACAGTTCTTTAGGTGGTTAGTAG	TAATATACAGTTGTGCTCACTAGCATACCC	50		20	477-153
Ya5NBC101	AC006030	CTCACTGACACTTTTGGTCAGACT	ATTTACTGAGCACAATGCCTCATAC	55	£	2	519-204
Ya5NBC102	AF118569	TCCCATTTCTCTAGACCTGCTG	CCCATAACAGGTCTTCATATTTCC	55	<u>u.</u>	17	483-194
Ya5NBC103	AL034408	ACTCTCTCCTACATCACTGACTTCTC	GTAAGCTTTGAGTTCAGAGGACAGATA	58	đ	×	556-237
Ya5NBC104	AC07065	GGGCATAGCTGTAGATATAAGCACTACAA	AGAAGAATAGAGGACTATGTCTGTGTCTC	58	đ	12	508-188
Ya5NBC105	AC006040	GTATACATTCTGCAACCAGTGGAG	AGAGGTAGAGGCTTGCATTTCAG	62	R/R	۲	598-281
Ya5NBC106	AC005532	CTTACAGTTACGGAGGCTAGAAAGTC	GTTATCATGGGAAGGGAACTGT	60	R/R	7	509-207
Ya5NBC107	AC004884	GTAATGAATAGCCGTGCAACTGTC	CACCCAGCCATTTCCTAGTTAT	60	FР	7	556-236
Ya5NBC108	AC007092	CATATGAGTGCCTGACTTTTACTACTTCTC	CTAAATACAGGATGAAAGGACTGGTAG	60	멉	2	567-215
Ya5NBC109	AC005745	GTGCCTGGTACTCTAGAAATAAAACTCTCT	AGAATGAACTCCGGCTCAAA	58	뜨	22	561-251
Ya5NBC110	AC004761	GAGTCTTTGTTCTGTTAACTTAGTGGTGAG	CTAGAAGGTCACACATATGTCAAGGAT	60	ቲ	5	558-170
Ya5NBC112	AC008032	GGTTATTAGTTTTGGGGGGGGGGGGGGGGGGGGGGGGGG	GGGATACCCAATTCAGTTGTACTAGA	60	đ.	ო	396-93
Ya5NBC114	AC007782	GAGGATTTTAGCAGATAGTATTGTGTTACAG	CAAAGTCTTATCAAATACAGCACACTG	60	·	12	524-223
Ya5NBC115	AC009316	AGAACAACTGCACATCGAGTATCT	ACCTTCAAATTTCTCCTTTGAGGAC	60	£	2	574-240
Ya5NBC116	AC006344.2	GATCCTGAAACTATTTAAAATCAAGAAGAC	TCTAACCATATGTAGAGTTAATCTCTTTGAC	60	đ.	7	575-237
Ya5NBC117	AJ010770	GGGAGGAAAGGAGAAACATCTAGT	CTCTCCAGCTATAACCCCCAACTACT	60	FР	7	515-188
Ya5NBC118	AC005913	AATACGTGTGTCTGTGTGTATATGTTT	TGCATACCTTCCCAGAGATAATG	60	Ъ	×	533-235
Ya5NBC119	AC006002	TGTTAATAAACAAGAACACTACTCCAAGG	CTTTTGTTATATACTGAGGAGAAAATGG	60	Ъ	. 2	482-167
Ya5NBC120	AC005863	GGACCACATGACTGAGTGTAAAGT	GAGGTGGCCTCTTAACCATAATTC	55	뜨	17	518-199
Ya5NBC121	AJ011932	AGGGGGAAAACATCAAAAACTC	CCTCATCAATACTGTAACTGTCACAAC	60	£.	21	510-202
	AC005/4/	CCALLCALLCIALLIGGGGGGGGILAG	GACIAAACCAGGATGTGAGCTTTT	23	ር ነ	4	527-217
Y BONBU 123	ACUUD/39	AICAAGIIGACACICAGIAIICACCAC	CIAGICIGCAGAACIGIGAGAAAIGIA	55	<u>u</u>	ц С	490-180
1 JONICE 1	ALUZZO IU	01464646166446461106144414646	CALAAIGGAAAAUTUCATGTGUTAC	90	Ŧ	-	457-131

(continued)
÷
ole
Tal

						- 1	roduct size
				i	Human	Chr.°	Filled-
Name	Accession	5' Primer sequence (5'-3')	3' l'rimer sequence (5'-3')	A.T.ª	diversity ^b	Loc.	empty
Ya5NBC125	AC004206	AGTATTTTGCACTTCTCTAAGGGTGTC	CTGGTCTTATGTTTCATCTGGATTC	60	Ę	9	507-223
Ya5NBC126	AC005144	GTCTGCTGAATGATTAAACCAACAC	GTGCCATTTCTACTACTGAAACCTAAC	09	£	17	480-171
Ya5NBC128	AC004808	GGGTGGGACAAGAAATACTCA	GCTTATGGCTTGCAGTTTCACT	55	ŀ	7	648-293
Ya5NBC129	AL008635	TACATGGAGTTAGAGCCCGTTC	ACAAGTGGCTGTCACYCAACAC	09	£	22	486-180
Ya5NBC130	AC004629	GTTGTGTCCACTCTTTGACTAGTATGA	GACAGTTTTACTGACTACACAGGATTTCAG	60	£	ъ	602-287
Ya5NBC131	AF002996	CCCAAGATCTAGGTGATGGACAC	GCACTTGAGATAACCTAGTTAGAATGC	60	뜨	×	495-174
Ya5NBC132	U91328	CTCGTGATTCACAGAAGTGTTGTAAG	CGGGGTTCATCCTTAATACATACAT	60	ц.	9	458-228
Ya5NBC133	AC000355	TGTTATCATTACACAAATACAGCACTTTAG	TCTTTGGCTATAAGGATATGAAAACTTAAC	60	<u>д</u>	7	692-374
Ya5NBC135	101102	ATTAAGCTCATGGTAACCAGCAC	GACTOTOTOTOTOTOGATTAGAACAG	90 90	. <u>LL</u>	- -	436-117
Ya5NBC136	AC008124	CAGCAACAATCAAAGTTTATAATGC	CCAAAATTCAATCCCAAA	60	i 🗄	10	749-439
Va5NBC137	ACON5002	GTTGCTGTTTTCTGCTGCAC		55	R/R	۰ ¦	521-197
Va5NBC139	AI 031650	TGAAAGCTCTTAAGGTCTTCTCTCT	TAAGTAGACTAGACAGAGAACAG	90	É L	. UC	851-634
Ya5NBC140	AC007877	GCAGCCCCAAGTGTTAAATTACTAT	CONTRACTANTON CONTRACTON CONTRACT	80	: 0	2	471-135
Ya5NBC141	AI 096769	CTGAGAAACCAGCAAAGTAACTGAC	CATGGACCCATATACAGACTACAAA	60	R/R	20	480-139
Ya5NBC142	AC007392	ACATTCTAGGACACCTGTCAGTCAT	GGTCATAGCATGGGAAAGAATATC	60	6	2	663-321
Ya5NBC143	AC006374	GCAATGCACATAAGATATGCTC	CTTTTCCCTACCATGGTGTGTCTTT	60	£	7	572-251
Ya5NBC145	AL035667	TGCATCCTCTTCTGCTGTTC	AATTGGGTTCACTAGACAAAGG	60	đ	20	500-276
Ya5NBC146	AL022329	CTGTCCCTTCTCAGGCTCATT	CTAGCATGTTGTCACCTCTCAACC	53	R/R	22	604-131
Ya5NBC147	AC007656	TAGCTGGGGGGGGGGGGGTAGTAATAAAC	AATATCACCTTATCAGTGGGGACCT	60	Ц	12	493-155
Ya5NBC148	AL031659	ACAAGATGACAGATGTAAACCCAAC	AAGGTGTTGTCAGACTAATCTATCG	60	≝	20	505-193
Ya5NBC149	AL033525	GTGTTACTGTGGCCAACTATCTCAT	ACTTATATGAGCGGGGGTACAGTTCT	00	đ	~	466-155
Ya5NBC150	AF135028	AAATGGAGACACAGAGGTGTAAAGA	CCCAAACTGCATATTTAAAGGGTAG	60	ц.	19	491-169
Ya5NBC152	AC004953	Alu flanked by other repeats	Alu flanked by other repeats	,		7	•
Ya5NBC153	AC005820	CCAATCTGGGAATTATGACAAGTAG	CTTCAGACTTCTGCTTGATTTCTTC	60	£	≻	496-186
Ya5NBC154	AC006371(B)	AAACACCCTAGATGCTGGGTAA	AGATGAGTGAGCCTCAGAACAAG	60	<u>LL</u>	~	501-197
Ya5NBC155	AC006565	TGTCAATATCAGACAGATCCATGAG	ACTTCCAACTATGTGGTCAGTTTTG	09	5	≻	505-182
Ya5NBC156	AC002531	TGTGGTAAGTGTAGTTTCAAAAGAGTTT	TAATCTCTGGACTGGAAACATAAAA	55	£	≻	480-148
Ya5NBC157	AC005281	CATACGTTAAATCACTCGGTACTCA	TCAGAAAGTATACAGGTGATGTGC	09	노	17	516-207
Ya5NBC158	AC005019	TATCTCCCCCTACCAAATTTCTTTC	GGATGGATTAGAAAGGATGGATTAG	09	đ.	7	500-172
Ya5NBC160	AC005245	CTCAGCTGTGCCTGATACTCTATAA	GCCTACTGGATAAGTCACACATTTT	55	<u>u</u>	17	551-234
Ya5NBC161	AL031978	CCTGTCTAAACTCCAGAATGAAGAA	GCAGTAGAAGATCACAGGCTCTAA	60	đ.	9	491-199
Ya5NBC162	AC003957	ATGAGCAAGTCTACATATTCCTCCA	CTTGTTGCTGTCAAGGGTCTAATA	60	đ	17	481-167
Ya5NBC163	AC004057	CAAACCAAGAGTTCTTATCACCAGT	TAGTAAGAGGTTTCCAAAGTACACG	09	£	4	624-316
Ya5NBC164	AF042090	CTGCTGACTTTGAACTTAAACTGC	GATGGAAGATGTCTTAGGGTTCTCT	60	ቲ	21	503-190
Ya5NBC166	AC004040	CCCTTGGCTCTATAGATAAAGTTGG	ACTGCACCAAAACTAGAGGGGAAA	60	£	-	532-210
Ya5NBC167	AC003980	AGCCCACAGCTAACGTTATACTAGA	GTGGGGTCTTTAAGGTTTCAATAG	00	ቲ	7	515-239
Ya5NBC168	Z97876	AGTGCTAACCAGAGATGTGTGTGAC	TTAGTGGAATGTTCCAGGACTGTAT	45	£	-	492-164
Ya5NBC169	AC002456	TATATAATCCCACAGTAAGCCCTCA	ATAGTTGTATACCAAGCCAACGACA	09	ቲ	7	493-184
Ya5NBC170	Z94722	GCAAGACCTGTGTGTATGCTTAAAT	GAGAGTACACGAAAATACAGGCTTT	09	£	×	521-195
Ya5NBC171	AL035688	TCTAGAATTACAAGTGCAAGCCATC	CTTCTCATCCCTGCTAACATAACAT	55	<u>ц</u>	9	451-130
Ya5NBC172	AC006371	CCAAACGTAAGATTGAGTGG	AGTGGTGTTCTCGGTATTTC	55	Ļ	≻	473-155
Ya5NBC173	AC003977	ACACACGAATGCAGGATAAT	TGCTCACAGTCCTTAGACTTTACAA	23	J [16	508-107
Ya5NBC174	AC006462	TCACTCTTTGTCTTGCTGACIACAG	GCTATAGCTTCTATTTACGGGGGAAT	55	≞ ¦	≻ (526-206
Ya5NBC175	AC000396	CCAGTGTCATACGGTGCTTAAATC	GGACTGGGCTCTTCAGGAC	55	£ (ი;	483-148
Ya5NBC1/6	2/4/39	GGGGGGGGGIIIGAIAIACAG	CCCTCATGGGGGGGGGGGGGTGTTATTT	ភ្លូ ម	ב (ב (<u>2</u> 1	666-298
YabNBC1//	AC000111		ICATGGAAAGCTTGTTTGGT	S S	₹f	- ;	01/-300
Ya5NBC178	AC004900	AGAGCCTGGACTCTGATGTTAGAC	GAGCCATGATAGGAGGAATACTAGAC	38	£ 6	<u>4</u> 1	583-260
YabNbC1/9	ACUUD3/3	GUAGAAGUI IGUAAIAAUUIUI	GUIGAACAUCIAAACACIGUIAGAC	00	£ E	- 6	064-161
Ya5NBC181	AL 1030 10 AC008041	CITGAAGATUGUCATGAGTAGA GTTACAGTGCCTACTTCTGGTTCTC	GGCATTICTTIGGACTIGTULU AGAATTACATACATAGAAC	88	۲ ۵	₹ m	450-205
				;		,	

563-287	722-410	522-205	513-202	649-381	476-156	645-330	536-738	200-200	007-070	486-169	•	461-204	530-230	500.200	107-000	4/1-000 4/1-000	429-188	48/-154	445-128	519-186	750-424	502-190	307-01	500 170	D/1-000	/80-46/	456-141	623-308	445-109	445-129	640-313	455-214	502-195		121 130	001-174	070-740	110 00	410-33	- 205	1 10-06 1	21-060	426-111	368-60	493-190	450-144	429-147	425-114	535-207	584-279	365-54	481-174	392-70
7	7	ი	4	9	7	19		7 0	- 1	_	9	9	4	- 6	<u>4</u> r	- 1	-	19	7	7	7	7			- 0	וס	7	12	≻	~	22	22	22	8	18	35	38	3₽	5 <u>5</u>	۲ ۲	7 6	2	<u></u>	14	21	-	9	16	14	5	e	×	22
뜨	đ	Ц	£	£	£	đ	6	8	L L	5	•	Ч	<u>a</u>		- 0	Ž	╘╎	Ţ	<u>Ľ</u>	<u>ل</u> ے	뜨	¥	2/2	ц Н	5 G	<u>ו</u> י	⊥	ı	ይ	Щ	Щ	L L	i 🗄	: '	8	2	-	•		ı	· 8	5	<u>ት</u> [£	R/R	£.	ቲ	Ę	£	Ľ	ΕĿ	щ	£
60	60	09	61	55	55	60	en Bi	80	31	8	•	60	60	80	85	2	6	00	55	55	62	60	en Bi	55		0	ទ	60	55	58	60	60	55	; ,	55 55	2 2	3	- Ug	3	, Ug	3 8	3 8	28	09	62	65	60	55	62	09	09	60	09
AACCCAGTGGAAACAGAAGATG	CAAGGGACTCATGTACTCTGTGAAC	ACCCAAGCAGTTTATACTGTACCC	GGTAGGGGCTAAATGGAAAACA	GCCAATTGCCTGGTATGTTTTA	ATCTCTTGCAGTTGAATGTCTAAGC	ACTCTTCTCATCTGTGTCAATTTGG	GCTTTAGAGAGTCTGACTTTGCTTC	CCACATTTTCTCCCAACCACTTTAC			Alu tlanked by other repeats	CTCAATGAGATATCACCTCACACAT	GATCTAACAACCAACTCCATCTT	ATTACAGAGAGCCTGCCATGAT				100AAGU 100110110AG16	ATACAACAGTTCTGGAGGTCTGAAG	TATTTTGGAGAGTTGTAGGCAGGA	GTGTTAATATTGTCCCCACATGTAA	ATCCCAAAGAAACCCACGA	GATTCTCATGTACCCATCATGC	ACGTCCACATTCCCATGTTT	ACCAACATCTACTTOTAC		CAGAGI CUUI GI GUAAAAI G	GTATTTTGCCCCTGCCCTA	TCCAGTCTCGTGTAAAATAGCTTG	AAACCTGGAGGGCATTCTTT	TAGTGTTAAGAGGCCCATTTTCTAC	CATAGACCTTCCCAGTGAGTGTTAC	CCAAGTGGCAGTAATAGACTCTGTC	Alu flanked by other repeats	GTGGCCCTGAGAAGGAATTT	GCTAGTTACAATGAAAATGACAGTGT	Alti flanked by other reneate		Alu flanked hv other reneats						IGAGGGIICIGIGAGAATICAA	AAGACCACAACCCCCCATACA	TGGGCCCTATATTTGAACAGA	CCCAGGGACTCTCCAGAAA	CACCACTGAAGCATGCTAGG	AATCACATCCGAGGGTGTCT	GGCCTCTGGTTTCAATTGTC	GGCTGGGTTGTGAGTTCT	GTGGGGCACTGTGTGATTC
GAAGGACTATGTAGTTGCAGAAGC	GGACAGGTAGAGACGATTTCCTAGA	CTTGGATAGAGCTGGAGGTCATTA	GAGTTTATTTGCCGTAGGTAGCTC	CATCTTCTGAACCCATAGGGAAAAT	GACAAGGACACAGATGTTAGGAATC	TGACGGGTGAGATGTATATAGAAGC	CACTCAGATAAGATGTGGACTTCA	GTTCTTTTTCTCTAAATGCCTCCTC			Alu nanked by other repeats	CAGAAGTAAGATTGCTGGATCGTAT	GCATAACTCCTAACCCATAATTTCC	CTACCATCAATAACTTGGACACAGA					CAGCUIGIAGAGCIGGAAAG	AGCAAATCAGTCCTACCATGA	GAGGGGGTAGGGATAGCATT	CATTTGGCGCAAGTGGTATT	AGGAGAGTGGGAATGGGTGA	TGTTGTTGCAAAGGACAGGA	GCCAATCTAAACGAATAATCA		GATGTGACUUTGGUTTGTAAA	TCCAAACCITTTTGCTCTGC	AGCCCAACATCTGGTTTTGT	CCTGGCAACCACCATTCTAC	CAGTTTTCCATATACATGTGGGTTC	GTTCTCTGTAAAATGGACCAATCAG	ACATGCTTTCCCATTATGTGTG	Alu flanked by other repeats	CCTCCACGGACTCCTAATTACA	ACTGCATGCCAGCCTCA	Alu flanked by other reneats	GACAAAGAAAATGTCACAAGGGTAA	Alli flanked by other reneats	TCATGCCTGAACATCTGCAT	CCTGCATACCCACACATACC			GAGUIAUIGGCAUUIUUCAU	CACATGGAGCIGITIGCIG	TCCCTGAACAAACCCATT	CAACAGAGAAGAAATGATCAGTGG	CCTCTACCTGCTGGGTTCAA	ATTGCAAATTGGCGATGTTC	TCTTGGCAAGGAGATGTGAA	CACTCAGCATCCAGTTCACG	CACTTGCCATTGACTCCAAA	GTTCCAGGGGGAAATGAAAT
AC006365	AC006365b	AC000047	AC006552	AL035445	AC004970	AC007191	AC005678	AC005065	ACOOARES		ALU31/65	AL031785b	AC004055	AC005293	AC005161	ACOON745		ACUU40U3	AC004593	AC002385	AC004848	AC002074	AL078463	AC004948	AI 096710		ACUU/ 243	AC007298	AC006989	AC006989b	AC004019	AC005006	BK407F11	AC002470	DJ323M22	AC004832	AL096873	AC000100	BA422A16	AC007682	AI 035665	AI 0136205	AL 122645	AL (32042		AL133289	AL133404	AC020663	AC008372	AC008843	AC01069	AL121823	AC016025
Ya5NBC182	Ya5NBC183	Ya5NBC184	Ya5NBC185	Ya5NBC186	Ya5NBC188	Ya5NBC191	Ya5NBC192	Ya5NBC193	Va5NBC104		DAI JANICA I	Ya5NBC197	Ya5NBC198	Ya5NBC199	Va5NBC200	Va5NBC201			Y ADNBUZU3	Ya5NBC204	Ya5NBC210	Ya5NBC212	Ya5NBC213	Ya5NBC214	Va5NBC215	VacNDC216		Ya5NBC21/	Ya5NBC218	Ya5NBC219	Ya5NBC221	Ya5NBC223	Ya5NBC224	Ya5NBC225	Ya5NBC226	Ya5NBC228	Ya5NBC229	Ya5NBC230	Ya5NBC231	Ya5NBC301	Ya5NBC302	Va5NBC303				Ya5NBC307	Ya5NBC308	Ya5NBC309	Ya5NBC310	Ya5NBC311	Ya5NBC312	Ya5NBC313	Ya5NBC314

\sim
tinued)
1 . (cor
່ວ
able

me	Accession	5' Primer sequence (5'-3')	3' Primer sequence (5'-3')	ΑTa	diversity ^b		
			1 ~ ~ montha mint ~		AIRCIAIN	Loc.	empty
NBC315	AP000474	GTAGACACCGCAGGCAACTC	AAAAGGATCCGTAAGAAGGAGA	62	đ	21	444-134
VBC317	AL132985	CCAAGTCAGGCCACCAATAG	GATGGATAACCTTTTTCCTGGT	60	FР	14	384-64
NBC319	AC007395	TTGCTGGTCCACAAACCATA	CCTTTGTCATCGTGCTG	60	Ъ	7	358-77
VBC320	AC009498	CCATCTCCCTCATTATTGTTCA	CCATTTGGGAGGAGGTTCAA	60	БР	2	478-161
VBC321	AL121748	GGAGATCCTTCTTTTCAGCAA	GGAGGTGTCATCCTGGTACA	60	đ	10	455-145
VBC322	AL132800	AGTGCGTCAGATCCTGTTCA	GGGTCTTTGAAAGTTCATGG	60	£	14	451-129
VBC323	AC007076	TTGAAGGGGAGCCCAAGA	TCTCTGCTCCCCAACTCTTC	60	£	7	556-268
VBC324	AC008268	TGTCTCAAGGGTCATCCTCA	TCCCCATCCCTAACTCTTTCTT	60	뜨	2	486-164
VBC325	AC009479	CTTCTCTCTGAAATGCCAAT	CAGTTGAAAGGTTTGACAATACACC	60	L	≻	501-184
VBC326	AL133500	CCAAGAGCCACTTCCTATTTCA	AATGGGGGGGGGGGGGGGGGCAGTCT	60	£	×	539-216
VBC327	AL132799	AGGCAGGTTCAATGTTCAAA	TIGTCTTATTGTGCTGGCTAGA	60	Ŀ	9	668-339
VBC329	AL121892	TTTTTCCCCTGTAGTTGGACA	TTGTTCAGGAGGGGGAAGGA	60	đ.	20	465-154
VBC330	AL133399	ATGCTGTGGGTTGCTAAGGA	CTGTCCCTTGTTTGGCTTGT	60	đ	1	402-88
VBC331	AL121593	TTCATGGCGAAAGCTTGATA	AGCTCCTGGCCAGATTAACA	62	Ę	20	414-92
VBC332	AL050342	TGGAAACAGGCAATGGACA	ACACAGGTCCTTGAATATGAGC	65	Ð	~	631-416
VBC333	AL117356	GGCATGCTATCATTCCCAAA	CCAAACTTCTGTTTGAGAGAATACG	60	뜨	14	588-281
VBC334	AL132708	ACACTGTCTTGGAGGCATTC	CCTCCATCCCAGTACCATGA	60	£	14	435-117
VBC336	AC007151	AGGCCCACATCACTGTAAGG	TGATCCATAGCTCTTTTTGTGC	60	đ	16	486-172
ABC338	AC009510	TCAAGAAGCTAAAGGCACCAA	AGGGGAAGGGAAAAGATGC	60	6	12	564-271
VBC340	AL109985	TCCATATCCCTTGTCTGGTTC	CCTGACCAGGTCCAAATGAC	60	БР	14	468-145
IBC341	AC007899	ATGCAATTGCTGAACACCAG	GGTGGACCGAGATTTTCTTTC	60	£	7	494-174
VBC342	AL049823	TTTTCCACAAATGGCACTGA	TGTCTGTGGCTCGTCATTTC	60	R/R	9	604-285
IBC343	AC005660	GACCACACTGGTCAGGGACT	CCCTCTTTGGTCTTGAGTGG	60	£	10	457-154
VBC344	AL109853	CGTGAGAAGCATAGGCAAC	TCCTTTCCTTATGCCTGCAA	60	đ.	×	472-158
JBC346	AL096776	GGAGAACTAGTGTGGGGGGGCAG	ACACTCCCCTGTCCATTCCT	60	ł	-	396-60
IBC347	AL035411	CATGCCCATTGCTTTACGTT	TGGGGTAGATGGACTCATCC	60	≝	•	465-140
(BC349	AC011504	TCAAGAACTGTGGGCCAAAT	GGATGTTGTCACAGCAGCAT	60	또	19	469-53
(BC351	AP000459	TTCCTCCCCTTTTTCCTGTT	TGTCAGTATGTAAACCCATGCT	55	뜨	21	437-123
(BC353	AL034549	CCATGTAACCTGGTAGACCTTT	GTTCAGCGGGAACAGTGAGT	60	£	20	432-119
(BC354	AC008039	GTAGCTTGGCCTGTGCTCTT	CCTCTGGGCTGAGAAACTCTT	65	뜨	7	466-148
IBC355	AL078477	CATCTCACTTGAAAGCCCATT	TGTGTCTTAATGACCCTGGAAA	60	£	ŧ	802-481
IBC356	AF130343	CAGGGTCCTGTGAATCCAAT	GGAGACAGAGAAAAGGGGGAGA	62	đ	80	389-84
JBC359	AC007564	GCAAGTCCTATGCAAGGTCAA	AGGCTTTTCAAGCCAGTGTT	09	FР	12	775-457
VBC360	AL031121	GAAACAAACATTTGGTAATGATGC	GACCAATGTCACTTATGAAATCCTT	09	đ	9	407-61
VBC361	AC007270	AATATTTTCTCCCATTCTTTTGG	TGTTAAAGCGCAAGTCACAA	09	Ŀ	7	423-131
VBC362	AL050308	CAAGTTTGTTGGCATAGAGGTG	ATCAATCCAGGAGCCGTTTT	60	R/R	×	506-187

^b Allele frequency was classified as: fixed present (FP), low (LF), intermediate (IF), or high frequency (HF) insertion polymorphism. Fixed present: every individual tested had the Alu element in both chromosomes. Low frequency insertion polymorphism: the absence of the element from all individuals tested, except for one or two homozygous or heterozygous individuals. Intermediate frequency insertion polymorphism: the Alu element is variable as to its presence or absence in at least one population. High frequency insertion polymorphism: the alu element is variable as to its presence or absence in at least one population. High frequency insertion polymorphism: the alu element is variable to two heterozygous or two heterozygous or present in all individuals in the populations tested, except for one or two heterozygous or

absent individuals. (–) Indeterminable. (R/R) Repeat in repeat. ^c Chromosomal location determined from Accession information or by PCR analysis of NIGMS monochromosomal hybrid cell line DNA samples. ^d Empty product sizes calculated by removing the Alu element and one direct repeat from the filled sites that were identified.

other only 4 myr ago, then we can calculate that 6.64/10.64 (62%) and 6.6/10.6 (62%) of the Ya5 and Yb8 Alu elements should also be found at orthologous positions within the genomes of nonhuman primates. If we shift the divergence of humans and African apes to 6 million years ago then the estimates change to 4.64/10.64 (44%) and 4.6/10.6 (43%). However, less than 0.42% of the elements were also located in orthologous positions in the genome of the common chimpanzee. The observed distribution of Ya5 and Yb8 Alu repeats located within the common chimpanzee genome would require a human and non-human primate divergence of greater than 10 myr ago. This is clearly a much older divergence time than is commonly accepted.

Three potential explanations may account for this. One is the selective removal of Alu elements from orthologous positions in non-human primate genomes effectively resulting in an ascertainment bias against elements in the non-human primate genomes because our elements were obtained by scanning a database of human genomic sequences. However, we consider this to be highly unlikely, because there are no known mechanisms to specifically remove Alu elements from primate genomes and even when an element is partially deleted from the genome it leaves behind a signature of itself.33 A second and more likely explanation is that the amplification rate for these subfamilies has increased recently in the human lineage. Alternatively, the higher average ages for each of the Alu subfamilies than those previously reported may reflect a higher sequencing error rate in the genome database, resulting in an inflated age estimate for the Alu subfamilies. The estimated ages of the subfamilies are also inflated by the faster accumulation of non-CpG based mutations (as a result of the larger number of potential target sites) as compared to CpG nucleotides. Therefore, the use of the CpG-based mutation density for Alu subfamily age estimates will be much more accurate than the use of non-CpG mutation density-based estimates using the current draft sequence of the human genome. The magnitude of the putative sequencing errors can be estimated by comparing the pre-viously reported non-CpG mutation density for these Alu subfamilies of approximately 0.4% for the Ya5 and Yb8 Alu elements to the levels reported here of approximately 0.8% for the Therefore, the maximum subfamilies. same possible error rate would be estimated as 0.8% - 0.4% = 0.4%. In our data analysis, there are a few Alu elements with much higher mutation densities than previously seen. We are not sure whether these represent a small number of authentic, highly divergent subfamily members (approximately 10% divergence), or the concentration of sequence errors in a few elements. Thus, other than the possibility of a few areas where errors may be concentrated, there is a relatively low sequencing error rate across the entire database, demonstrating the reliability of the draft

human genomic sequence. Large scale re-sequencing of the Alu elements characterized in this paper would resolve this issue and allow for an accurate estimate of sequencing error rates within the draft human genomic sequence; it would also provide a refined estimation of the average age of the Alu Ya5 and Yb8 subfamilies as well.

SINE retroposition is the primary mode of mobilization of Alu elements, where mutations in the source gene(s) create their sequence evolution. However, previously we reported that gene conversion and genetic instability might have also significantly impacted the Alu sequence architecture.18 Our analysis of the Yb8 mosaic elements also suggests that gene conversion may have influenced the evolution of the Yb8 Alu subfamily. Among the alternative explanations for the occurrence of mosaic elements, multiple parallel mutations seems unlikely; unless there was selection for these specific mutations, such as the posttranscriptional selection previously proposed.8 However, a selection process that would only select for these specific mutations would be improbable. Recombination may have generated some of these mosaic elements, but multiple recombination events would be required, making it unlikely. Therefore, we believe gene conversion to be the most likely explanation for the existence of the mosaic Alu elements.

Our analysis of the human genomic diversity associated with the Ya5 and Yb8 Alu elements reported here resulted in the recovery of 106 new Alu insertion polymorphisms. The percentages of Alu insertion polymorphisms recovered from each subfamily were 25% and 20% for the Ya5 and Yb8 subfamilies, respectively. The percentages of Alu insertion polymorphisms in these two subfamilies are in good agreement with previously published insertion polymorphism estimates for these Alu subfamilies.²¹ We can also estimate the total number of Alu insertion polymorphisms within the draft sequence of the human genome using our copy number estimates and the percentage of Alu insertion polymorphisms associated with each family. Using this approach we should recover 2640×0.25 or about 660 Ya5 Alu insertion polymorphisms and 1852×0.20 or about 370 Yb8 Alu insertion polymorphisms through the exhaustive analysis of the draft sequence of the human genome. Therefore, the exhaustive analysis of the entire Ya5 and Yb8 Alu subfamilies from the draft sequence of the human genome should generate a little more than 1000 Alu insertion polymorphisms from these subfamilies.

Additional Alu insertion polymorphisms that are present in diverse human genomes may also be recovered using PCR based display approaches such as those previously reported for Alu and LINE elements.^{17,34} Each of the Alu insertion polymorphisms in the genome is a temporal genomic fossil that is identical by descent with a known ancestral state.^{35,36} Previously, the analysis of Alu insertion polymorphisms has proved useful for the

							Product size ^d
Name	Accession	5' Primer sequence (5'-3')	3' Primer sequence (5'-3')	A.T.ª	Human diversity ^b	Chr.° Loc.	Filled- empty
Yb8NBC1	AL049798	TACCAAGAGGATGTAAAACACAAGG	GGAACCCAAGGCTTATAATTTAGTC	60	FP	1	495-174
Yb8NBC2	U91327	GTAACTCTGTGGGTCCTCATATTATCACT	ATACCTCATCAGCAATAGGCAATAG	60	FP	12	461-130
Yb8NBC3	AC004804	AGATGCGCAAGTCCCTGATA	ATTTTTGGATTCAGCCAACG	61	HF	12	558-236
Yb8NBC4	AC005156	AGTGAGATGGTGGTTGCACA	AAAAACCTAAAGAGGGCAGT	60	FP	7	451-133
Yb8NBC5	AC004027	AAGGTCTAAGCGCAGTGGAA	TGTATGCAGGTTGCTTGCTC	60	LF	7	503-167
Yb8NBC6	AC006150	ATACCAAGACATCACACTGC	TAAAGCTGACACATTGTTGG	60	FP	7	606-203
Yb8NBC7	AC005048	AGGTTCATCCATGTTGTAGG	CTTAGAAGGGAATCCAGGAG	60	HF	7	605-285
Yb8NBC8	Z98950	AAGAAAACTGATGGGGAAAG	CCAACTAGAGAAACGGAGAA	60	IF	Х	599-198
Yb8NBC9	AC004825	GTCCCCACCAATCCCTATCT	TGCTCAAAGTCCCACAGCTA	55	IF	14	655-322
Yb8NBC10	AC006352	CACGACAACACGTTTACCTCA	TTTCCTTTCAGGAACGTGGA	60	IF	7	505-165
Yb8NBC11	AL022477	TGGAAAGTGCGTGCCTTAAT	ACCTGAGGGAGAGACATTTCC	60	FP	6	510-188
Yb8NBC12	AC0006241	CCCAGCCAGGGTTTATTCTT	ACCCTGAAATGTCCTAGTGC	60	FP	9	487-160
Yb8NBC13	AC002331	TCTGGGTTTCTCTGGTGGAC	CTGGCAAATGCTACCCAAGT	60	LF	16	510-168
Yb8NBC14	AL08633	AGGAGACATTACAACTGATACTGC	TTGGCCTATTCCAGTCATGG	58	FP	Х	499-167
Yb8NBC15	Z82211	CTAATTCCCCTGGCTGCATA	CTCTGGTACGGCCATAAAGC	60	FP	Х	481-165
Yb8NBC16	U51244	TCACGAGAGGCCACTTTAGG	CCGACCACAAGCCAGAGTAT	60	FP	2	519-211
Yb8NBC17	AL049642	AGCATACAATTTGGCAAGCA	GCAGGAAGTGATTGTGCTGA	60	FP	X	507-184
Yb8NBC18	AL078476	TGTGGTGTGGGCTAGAGGATG	TGGGACTCAGATTTCTGATAGGA	56	IF	21	431-133
Yb8NBC19	AC007077	TTGGCATGTGAATTGTCTGAG	AAACCGTCAGTTGGGATCAG	55	FP	2	516-191
Yb8NBC20	AC002059	TCTGGGCAAGTCACTCAAAA	ACTGTTTCCATGGGCATGAT	56	R/R	22	502-158
Yb8NBC22	AC004875	CCACCAATGTCCTTTCTTAC	AGTGGAATCAGTCAATTGGT	50	FP	7	598-275
Yb8NBC23	AC005821	CCTCCTTGAGAAGGCAACAG	TGCATCTCCAGGTGTTCATC	60	FP	17	499-177
Yb8NBC24	AC005772	AACACTCCACCCAATAACTG	CATCTCTTCTTTACCTGTTTCC	56	HF	17	661-338
Yb8NBC26	AP000036	GGGTCCCTCTCTGAAGGTAAA	TTTTTCCTGCCAACCAACAC	56	HF	21	499-150
Yb8NBC27	AL021940	TTTTGGGAGGGACACAGTTC	GGGCCACACAAATAAATTTCC	55	FP	1	522-188
Yb8NBC28	AC003998	CTTTTTGATCATGAGCTGTG	ACAACAGAAACACCAGCTTT	60	FP	5	515-197
Yb8NBC29	AL09177	CTCTCCAGTATGGACAGAGG	AGTGCCCAGAACAGATATGA	60	FP	6	519-200
Yb8NBC30	Z95124	TTGCCTTGGATGGCATATCT	AAATGGCCGGAGTAAGTCCT	55	IF	x	497-194
Yb8NBC31	AC005046	TGAGGCAATTTGGAGGAGAG	TGGTGTGCTGTATGTTTTCCA	60	FP	7	518-188
Yb8NBC33	AP000352	GGAGAGCAAGCACACATAGT	GCACAATAGCAGAGGAGAAT	55	FP	22	496-167
Yb8NBC34	AP000168	ATGACCTTTGCATTTCACCA	GTTCAAGCCCCATCACATCT	60	FP	21	513-227
Yb8NBC35	AP000171	CCTTTTTGTCTCCTGGCTGA	CCTGAACACACCAGAGCAGA	60	R/R	21	497-220
Yb8NBC36	AP000156	CTAAGGAGAACGGGACAGAT	TATATTCTGGATCCCAGTCC	60	IF	21	506-183
Yb8NBC37	AP000193	AGAATCGAGTTTTCCGAGCA	GGGATGGTACAGATGGCATT	60	FP	21	486-162
Yb8NBC38	AC002367	CGAGAGAAAGGGGTAGAAAGC	AATGCCTTCCAAGGACATCTT	60	FP	X	480-311
Yb8NBC39	AP000111	CATGTGTCCATGGTGGTCAG	TCACCCCACTTCGGATTAAC	60	FP	21	456-129
Yb8NBC40	AP000080	TCCCAGGAGAAGGATGAGAA	CCTGTGTAGTTTTGGGCAATG	60	FP	8	500-171
Yb8NBC41	AC006011	TGCTTAAGGTTGGTCAGCAG	CAACCAGGAATGCTGTTTTACA	60	R/R	8	482-153
Yb8NBC42	AC005971	TTCCAGCATGTGAGAACATA	ATGCATCTTAGTCTGCTTGG	55	R/R	17	517-189
Yb8NBC43	AC004228	GTTGGACTGGGCTCTACCAG	GACAGCAGTTTGCCATCTCA	60	FP	11	521-201
Yb8NBC44	AC005521	ACCACCCCTGGTACCAATTT	ATGCCTGCTCGTGCTTTACT	55	R/R	7	503-180
Yb8NBC45	AB020874	TGGCTTCAAGAGCATATCCA	GAGAAATGAACGCATTTTGG	55	FP	9	567-274
Yb8NBC46	AL031224	TGCATTTCTAAGCAGTACCAGTG	TCCATTCATTCGTGCCTTCT	60	FP	ě	523-203
Yb8NBC48	AC005495	AGGGAACAGGTGATGTTTGG	GAGGATGCAAAAGCATGTGA	58	IF	17	511-178
Yb8NBC49	AL031904	GCAGTGGATTGGTTTTTCTG	GCTGAAAGAGGCATTGAAATC	60	 IF	6	542-205

Table 2. Alu Yb8 accession numbers, locations, human diversity, oligonucleotide primers and PCR parameters

Yb8NBC51	AC005585	GCAGATAAGGGTTAACTGGA	GAAACACTTGGAAGATGCAA	60	8	66	500.1RE
Yb8NBC52	AC004984	GGGGTCAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	ACATCGGTGATTGGAAAACC	60	: ft	7	515-196
Yb8NBC53	AL050338	GGTGGTTGCTAAAGCTAGGG	GTGGCAGGTTTTGAGAGGAT	60	R/R	9	499-186
Yb8NBC54	AF165147	TGCCTACCTTTTGCACTTGA	AGCATATCATGACTGGGTTGAA	60	đ	21	454-220
Yb8NBC55	AC006374	CAAGGGGGCTATGCACTTTA	CCACCCAAATCTTTTTGTCA	60	đ	7	494-146
Yb8NBC56	AC007056	TGAACCACATGGACATCAAA	TATGCCCACCCAGATAATCC	50	đ	14	510-405
Yb8NBC57	AC006230	CCTTCACCTGCTTCCTCAG	TATTCACAACAGGCCGCTTT	60	ፎ	14	519-191
Yb8NBC58	AC007319	ACACATCCCTGGGGCTTATT	CTTCCACTTGAAGTTTTCACTG	60	£	4	566-251
Yb8NBC59	Z99758	GCAAAGGCCATTGAGAGAAA	AGGTCAAGCTGATCACTCACAG	60	£	-	527-211
Yb8NBC60	AC004765	TGGGATGTGGTTCTGTGATT	TCAGACTGTGTTACTACGGGTCA	55	£	12	528-304
Yb8NBC61	AC005040	GGAACTGCCTGAATGAACAA	CCTCTGCGCCCCTCTACTAT	60	6	2	539-209
Yb8NBC62	AL031368	TGCCACACATTGTTCTAGGC	TGCCAACTATTGGAGGAGATG	45	,	×	548-307
Yb8NBC63	AC005901	CTCCCCACGACAGAGAATTT	GATGGGTGGCAATCAGAGAT	60	0 L	17	609-282
Yb8NBC65	AL031228	ATCTCATCTCCCTGCCTCTG	GGGAGGTCTGGAGATCTGTG	60	: <u>u</u>	ي ب	517-186
Yb8NBC66	AC004981	TTTTAGGAATTGCCCCATTG	TCACTAATGTCCCAGCCAATC	55	đ		485-167
Yb8NBC67	AL022170	TCTCTACCCAGCTTTACCAA	GAGGACCAGCTTAGTTTGTG	55	<u> </u>	. 9	503-375
Yb8NBC68	AC004103	AGAAAGTGCAAAGTGCCTA	TCCAAGCTCCTTAGTGTAGC	60	£	×	518-188
Yb8NBC69	AC004458	CTTTCCCAAGGCCTCTGTC	GCCACACACCTAAAGCCATC	55	ц	2	557-242
Yb8NBC70	AC002456	CCAAAATCTTCCCAAGCAAA	TGTCAGTTCCTGGTTGGCTA	55	ł	2	541-208
Yb8NBC71	AC006222	GTGCTGAGCGCAATCTTGA	GGACCAAGGGGGGGGCATTTA	61	5	7	493-167
Yb8NBC72	AC002432	GGTAGTGAAGAGGGGCGAGGT	ATGCCAACTGGGTCTGCTAC	45	R/R	7	526-210
Yb8NBC73	U47924	AGCCATTTTTCCCACTTCTGT	TGACCTCCCTTCAGGAATTG	55	Ę	12	437-111
Yb8NBC75	Z68328	CCCACTGTGTTTATTGTTCC	GCTAAGTACCCAGACCAAG	60	£	×	519-200
Yb8NBC76	AL031770	TGCAGTTAAAGCAACGCAAA	TTCACCTGACGAAGCCTGTA	55	R/R	9	515-197
Yb8NBC77	AC007542	CGGAATGTTCTGAGGATCAAA	GGAAGCTCTGCACAACTCCTA	55	5	12	547-218
Yb8NBC78	AC005866	GAAACGCCTCCACCATAGA	TCAAACCTGGCTACACAGA	60	£	12	536-215
Yb8NBC80	AC006249	ATTTCACAGTGCCCTGTCCT	TCCAGGCAGATGAATTGACA	60	щ	8	456-123
Yb8NBC81	AC004837	TCCATTACTGAACACTTGGA	GAAGGGCAGTTTTGTGATAC	60	. 1	2 ~	502-173
Yb8NBC82	AC023806	TCATTGTTCTCTTGGTGTTG	ATGGAAACAGTGTGAGGAAC	00	: 0.	. 9	566-239
Yb8NBC83	AC004741	CTTCCCCCTTCAGTGCCTAT	AACATGCATCCTGTGCAGAC	60	<u>e</u>	~	528-199
Yb8NBC84	AL008628	TGGTCTGCAGGTTCTCCTCT	TCAGCAAATAAAGCCCAAGG	60	£	9	517-206
Yb8NBC85	Z98744	CACCGCGTGTTGATAGAGTC	CCACCTCACCATTCCAGAGT	60	Ц	9	483-163
Yb8NBC86	AC004595	CTCCCTTTATCCCGGATGTT	GGAAGGCCATGGTGAAGATA	60	£	-	460-353
Yb8NBC87	AC003048	TACTGAGGCCATCGAGGAAC	ACCGGCAGAGCATAAATCAG	60	Ð	×	537-210
Yb8NBC88	AC002524	CAGCTAGGCCTTGGAGATCA	TCAGAACCATGTTCTTGGAATC	60	Ę	×	526-199
Yb8NBC90	AF02503	AGCTTTCTGCAAGCAAAGGA	AAAACAGTCTCAGGGCCAGT	55	R/R	e	488-153
Yb8NBC91	AC000083	AGCAACAGGGATTTGTCTGC	CAGTGGCTGACACACACACA	60	ቲ	22	513-194
Yb8NBC92	Z82189	CCTACCAAGACCGACAGGAA	GCAGGGCTGCACTTTTTATC	60	đ.	23	533-183
Yb8NBC93	AL035461	AAGTGAGTCCCAGGGCCTTCT	CACACAGGCACTTGTTTGGT	60	ш.	20	601-274
Yb8NBC94	AL049633	GGGTGTGATGAAGGAAATAA	GCACTGCTCTGACCTCTATC	60	£.	20	601-274
Yb8NBC95	AL031346	GTGCTCAGCCAAAATGTCA	GGCACCAGGTTTCCTGAAGT	60	£.	23	532-210
Yb8NBC96	AC006222	GAACCCAAATAGCCAAAGCA	TGTCCTTCCCCCAGTTTATG	60	ц	23	498-224
Yb8NBC98	AC006441	TTGGCTATGTGAGTTAGATTGG	GGGCAATTTCAATAAGCAAGAG	60	ቲ	17	514-192
Yb8NBC99	Z92542	GATTCCAGTGCCTTCTGCTC	CAACCCATACAGTGCTTGGA	60	£	×	524-200
Yb8NBC100	AB019438	CGCAGGTGCAATAATATGGA	AATTCCCTCCAGGTTGCTGT	60	Ľ.	14	574-247
Yb8NBC101	AC005104	TTTGGCATCCACAGATTTGA	CTGTGCAGATTCCCCCAAGTT	60	£	د.	593-273
Yb8NBC102	AL035088	GCCTGCAGAATGGAAGAAAC	CCAACTGAGTCCCCAGAAAA	60	또	×	512-323
Yb8NBC103	AL022576	GCCTTTAAAGCCTAGCTCTC	GTGAATGCAAGTGAATGAAA	60	ቲ	×	531-205
Yb8NBC104	AC004638	GGGAGGAGTGGATGAATAAT	AAAACTGATGTCCAGCCATA	60	đ	16	533-207
Yb8NBC106	AF064865	TCACAGCACAATTCACAACTG	CTGGGTTGCATTTCATGGTA	60	뜨	21	558-233

Ĩ <u>Ŝ</u>
ы И
able

	· ·			Ē	Human Firman	Chr. ^c	Product size ^d Filled-
Name	Accession	5' Primer sequence (5'-3')	3' Primer sequence (5'-3')	A.T.ª	diversity"	Loc.	empty
Yb8NBC107	AC006222	GTTTGGTTTTTCCGCAGTGT	GACTCGTCACTGGGTTGGAG	60	Ъ	4	527-207
Yb8NBC108	AF164343	TGTCACTTGATTGTCCGCATA	TCAATGGCATCCTGAAAACA	60	Ľ	~	550-194
Yb8NBC109	AC006371	GTGCAACTTCAGTTTCTGCTAAGAT	CATGGTTATCTGCAAAGACTATGAC	55	뜨	≻	532-212
Yb8NBC110	AC006383	AATAGGCTGAATGCCCCAAT	CTAGCATTGCAATCCCTGCTTT	60	5	~	507-186
Yb8NBC111	AC007320	CCAGTGTCATCCAGACTTATTC	TACACACACACACATGCATTCTAAG	60	ድ	~	531-192
Yb8NBC112	AC006999	GCATCTTAACCTAAATACCTGATGC	CAGGGACATAGGGTGTGAGTTACTA	60	£	>-	503-192
Yb8NBC114	AC004617	GGGTGAGATAGCTTAAGGAAAGAGA	AGATCTTCCCAAGAAGCCTTTC	60	£	≻	510-164
Yb8NBC115	Dj102d24	TCATTCAGCCAACACTGACC	CAGGTTTTACCTCTACCCTTGG	60	£	22	628-297
Yb8NBC117	Ź82189	CAACCACAGGCCTAAAGACAT	GGCTGCACTTTTTATCCACCTA	60	£	22	461-111
Yb8NBC118	AC006548	GCAGAGACACATAAGACTGATTGAA	ACCTGGGCTATGACCTGATAAATA	00	£	52	519-200
Yb8NBC119	Z95114	AGACCTTTGTCAGATGGATAGATTG	GTTTTGTGCTGTAAGGCTGAGTAG	60	£	22	425-110
Yb8NBC120	AC004019	CAGTGGATCTCCATTTTACCTCTC	GGAAGGTTTCAGGAAGAAGTG	60	ш	22	532-212
Yb8NBC123	AL031846	TTTGGATGTTTGTTCCCTCT	GGTGAGGCAGAAGCACGAG	09		22	732-412
Yb8NBC125	D 309122	AGCCAGAAACCCTGAACAAG	AAAGGCCCCAGAAGTATACCA	09	Щ.	22	415-97
Yb8NBC126	AC002055	AAAATGTCCCCTTTGTCCTTC	CCTACGCAGAAACACCCTAGA	60	Ļ	22	438-118
Yb8NBC129	AC004052	CCCAAACCTCCTAGATCTGC	CCCTGATTTCTTTCAGCAGTG	55	R/R	4	528-136
Yb8NBC131	AC002994	TGTGGGTCTATTTCTGACTCCA	TCTACAAAACCGAAGCTGTT	55	£	17	506-264
Yb8NBC132	AC002458	GTTTCTGTGGGTTGGGATTC	AGCCAGCAAGAACCTGAGTC	60	£	4	507-187
Yb8NBC133	Z84470	GCCATTGATCCCACAGAAAT	GCTGTGAATTCGTTGGTCCT	55	Ц	×	536-232
Yb8NBC134	AC002067	TGAGCAAAGGATTTGAATAGGC	AGGGTTCCAGTTTCCCCCATA	60	Ц	7	526-206
Yb8NBC135	AC007392	TTCCTCCTCTTCTGGGACAA	GGAACCAAGGAGCAAAGAGA	60	đ	2	659-206
Yb8NBC136	AC007055	CTTGCTCACACTCTGGTGGA	CTGATTTCACCGGTTTTTCTTC	60	·	4	530-196
Yb8NBC137	AL031782	GGGTAAGTGGACAGGCGAAA	TGAAGCTATCTGGACCAGGAGT	55	£	9	454-126
Yb8NBC138	AL031653	GTTCCTTTCTTCTCCTCAAAG	TGCCTTTAATGTGCCATCTT	60	đ	8	650-332
Yb8NBC140	AC006012	TTTACTGGACAGTTTGAAGC	CAGAAATGGTTCCTGTGTTT	55	R/R	7	494-180
Yb8NBC141	AC003950	GGGTAAGACAATAGTGGGGGATT	TTCACTAGATGTGCAAGGGTTC	60	ቲ	17	530-219
Yb8NBC142	AL049869	TCCAGTGCCTCAGAAGGTG	CATGGTGTCCTTCCTGTGTG	60	ቲ	14	487-162
Yb8NBC143	AC009044	GGCTCTCTAAGCTAAGACAATCAA	CGTGCTCAAGGTATTGGTCA	55	£	16	443-133
Yb8NBC144	AL033531	TCACAGCGTGTGCATTACAA	AGGACTTCATTTTGGGGGGATT	09	ቲ		578-255
Yb8NBC145	AL035089	TGGTCCAGAACCTTCTCCAA	CAGGAACATGGGCTGAGTGT	65	ይ	20	520-197
Yb8NBC146	AC009028	CTCTTCTCCAGGAAACGTC	GGAGCTCTGCCTTACACTCAA	99	ш	16	887-592
Yb8NBC147	AC010340	GAAATCTGTGCCATAGACGAAA	TGTGTGTGTACCACCATTTACA	55	ይ	ഹ	516-149
Yb8NBC148	AC010582	CCAGGCCTCCATCTTTGATA	TCACTTTTGGGCATGTCAAG	60	<u>L</u>	14	537-218
Yb8NBC149	AL135746	TGAGTGAGTTCAGAAAAATCAAGG	TGATTAATTTACTTCATTTGGCAGT	09	ቲ	14	460-138
Yb8NBC150	AP000855	CTGGCCATAAATTCCCTCAG	TCAGAAACTGCCCCAAGAGAGA	55	1	2	474-160
Yb8NBC151	AP000456	GGCACCAGGAGGAGAGAT	TGGTACCAAACTGCCTTCCT	8	ድ በ	2	464-138
Yb8NBC152	AC007911a	IGATGTTGACTTTGGCTTGA	GCICCALAACIGGGIICAGG	60	ᡛᡰ	<u>ع</u> :	520-183
Yb8NBC153	AL049776	GGGAGTTAATCACTGTCCTCAA	CAGGCTTTAGAATAAGCAGTGAGA	00	£	4	569-248
Yb8NBC154	AF172277	GGCCTGAGCACTGGTAGTTT	TGTGACTGGCCTATTTCACG	8	di l	2	469-147
Yb8NBC155	AC010169	GGGAAGAGGGGTCCAAGTGA	TTCCCCTCTACTCCCCTCATTC	00	£ I	ი ;	421-90
Yb8NBC156	AP000566	ACTCAGGCCTTTCATTCTGC	ACTGGCAAGGGGAATGTGAGA	8	£ !	5	554-234
Yb8NBC157	AL121748	TATGGTTCTCAGCCATCACG	ATTCTTCCCCAAAGGGAGTC	00	<u>щ</u>	9	712-423
Yb8NBC158	AC007671	GCAGAATACACCAAGCTGAGG	TGCCTGACTGTCCTATTTCAGA	8	ት	5	394-69
Yb8NBC159	AC007680	TCACATTGTCCCTTCTCAGC	TATGCAGGGCCTTCAACATA	8		2	448-112
Yb8NBC160	AC007284	CCACACATGGGTACCAGTCC	TIGCTIACCCACAGICACCTC	යි ද	<u>ب</u> ۲	≻ ¢	404-72
YD8NBC161	ACU0/100	CCA1G11CCAGGGAGG1G11CA	CACGCAAAGI IAACAGAAGI GC	38	ት (2	418-85
	AL13298/	GUAUTUALLI AGIGGUIGU		89	ŀ	<u>t</u> u	004-185
	ALU3340/ Arringsig	11110AA1G00101616016 40^^^^7700470046404	10040100444400110400 104000044144444	5 2	, <u>6</u>	ь÷	402-133 207 76
Yb8NBC165	AC010200	TGGGATGAGGGAAGATTGT	ACAGTGCCAATTCCTGAGAA	30	L (L	1 5	465-151

Yb8NBC166	AL121852	CTGCTGCCTTCCCTAGACTG	CTCACTCTTAAGTGAACAGACTCAA	55 25	6	14	570-248
	AL049///		ACIGGGIGCIICAAAAGIGG	90	£ I	14	415-95
Vb8NBC160		AGAI GUUUUAUAI AI UAAA TTTOOTAOOAOAAAA	AIGGCALICGIGGGILICIA	60	9	i Q	469-150
Vh8NBC170	AU000400		GUUIUUIUAUAUAGA	00	, <u>(</u>	~ `	426-99 500 835
VBNBC171		くよくくよく。くらよりななりななりななくろうろう		28	1	< <	502-500
Vhanaci/1	AC010107		GACAAAGGGAAAAAICCCAIC	00	£ 6	ρţ	53/-206
YhBNBC173	AC007250	GTAACTTCTCTCTCCCTTAAAATGT		88		<u>7</u> 6	400-00
Yb8NBC175	AC011493	GCTAGGACCTCCAGTATTATGTTGA	AGCATTCCCTCTGTGAACTGAACTGAAAT	22	L ,	<u>o</u> 5	424-105 420-87
Yb8NBC177	AP000561	GACTACTCCAAAACTGCAAACAAAG	CTCAGTGAAATGCAAACTCTTTGAC	22	â	3 2	474-150
Yb8NBC178	AL080286	TGGTTTCTTCTAGGCTGCTTATTAC	TAGGTCCATTTCTCACCCTTTATAC	80	- '	ī –	489-108
Yb8NBC181	AC007917	CATGTACCTTAGAATTCCACTCTCA	CCCCAAAGTTTATAGTCTGTTGTCT	55	<u>d.</u>	• m	487-151
Yb8NBC183	AP000497	GGAAGAAATGCAAACTAAATAATGAGAG	CATTGTTACCAGCAACTTATTTACA	55	: 61		465-140
Yb8NBC184	AP000495	AACTAACATAGCCCTGGTACAGAAA	CATTCCTGGATTACATCCTGTTTTA	55	с Ц	ი ი	509-179
Yb8NBC185	AC008040	CACTTTGAAATAGTGCAAGGAATTT	CTCATTGACTCCTTTGACTCTTGTG	55	£	ო	500-211
Yb8NBC186	AC008055	ACAGTGGATGCTCCATATTTTACT	AGGTCTTGGAACTAGGAGCTTTATG	55	Ъ	12	503-177
Yb8NBC187	AL031905	GTCCATTCCATTTTACTGCTTACTC	TCCTGCATGTTTAACTTAACTTTCC	55	đ.	9	491-179
Yb8NBC189	AC007684	GGAAGATTTGAGAGTGAAATACCC	ACATCATGGCCTGAACTAGTTTTTC	67	뜨	2	541-220
Yb8NBC191	AL078604	AGTGACCAGAAAGCTCACAGTGTAT	CAGGGTTGCATGTACTGAGATATAG	65	£	Q	687-346
Yb8NBC192	AC006325	CTGCTCTACCCTAGGCTCTTCTATC	GCTCCTCTGCTTTTATGTGTTCTAC	55	노	7	423-132
Yb8NBC193	AL049836	AGIGITGTATTTAGGTCGGTGCAA	GCATGCTTGCAGGTGAGTC	55		14	536-164
Yb8NBC195	AL109733	CCTTTCTGGAAGGTTTTCAATG	CATGATGGAGGGGGGTACAAGGAGATT	58	R/R	×	531-201
Yb8NBC198	AL035695	AGGTCTCAAGTAGGATCCAGAGAAG	GTTTGTGCAAGCTGGGAAGTTA	58	£	9	528-194
Yb8NBC199	AC007377	TAGATGGCTTTAGCAATTATAAGGT	CAATTTCAGGAACACTGTAAAGTCA	60	£	2	848-522
Yb8NBC200	AC008041	GGAAGCAGATCTTCTGACTCCTA	AGGCCAATTACGGAATACATAACTC	55	£	ო	426-99
Yb8NBC201	AC007558	GGAGAAATGTAAGGTTTCTAGCAC	ACCAATGCAACTATCTACACTGACA	60	뜨	7	476-145
Yb8NBC202	AC006984	ATGTAGAGAAGCTGGTCTGTGAAG	CATTICCTATCTTACTCTCCATGTC	58	đ	7	405-90
Yb8NBC203	AL031655	CAAGATTGTCAGTGACCCTTAAGAA	TCATTCTAACCCGTTCAGATGTACT	55	đ.	20	518-200
Yb8NBC204	AC004885	CTTCCTCTTTCCTATTCAAGCTCT	CAGAAGAAGTGCATCTCTCAAAAG	55	đ	7	489-181
Yb8NBC205	AC007543	CTGCCCTAAAACTCAGTGACTAAAA	AAGTGGACCTGAAACCTATGTGATA	60	đ	12	419-93
Yb8NBC206	AL033525	CTATTTCCTAGCGTGCCTGAGAT	TGAGGTGATTTACCTTCACTCTACC	60	đ	-	486-153
Yb8NBC208	AP000243	ATCACTAAAGAGACTGTTGGCGTTT	TAATCTAGGCAAAACTGCTTACCC	60	<u>ц.</u>	21	357-111
Yb8NBC209	AC006511	AAGTCATTGCTTACAGAAACTGGAG	CCATGGAATGACATCTAGGTTGTT	60	£	12	548-227
Yb8NBC210	AC007198	TGACGTGCAGACTACCTAATGTAAA	TACTTTTAGAACAGGGCCTCAGAAT	60	£	¢.	416-91
Yb8NBC211	AC007165	TGAAAACCAGTTTGCCAGAA	GGGGCTAACTCAGATGTCCA	55		18	383-58
Yb8NBC212	AC006561	TGGACTACAACATACCATCCTCA	CAGCGTGTTGTGACATTTGTT	55	£	12?	418-102
Yb8NBC213	AL033381	CAGCATTTGTGCCTTATCCTT	TTGGTGTTCTTGAAGAGGTGAA	60	£	9	562-210
Yb8NBC214	AC000159	CCCTGCAAACCATTTCATCT	GGGTGAGGGGCTGTTAGAA	60	£	1	719-472
Yb8NBC216	AC005999	ICTITGTTCCTATCITACCCAATTC	AGGCACAAAGTGGAAACTGG	55	£	7	400-84
Yb8NBC217	AC005988	CTTGCCATAGCCCTTTTGT	GGGTCTTCTTGGGGGATGAA	50	ቲ	17	648-308
Yb8NBC218	AC005099	TGAGGTGAGGCTCTGTTTCC	CTGTTTCTTTCCTGCACCA	50	,	7	531-215
Yb8NBC219	AC004866	TACCAGCATTGCCTCACATC	GCACATGGCAACTGTCTGAG	62	đ.	7	580-231
Yb8NBC220	AL024509	AAAGAGGTTTCTTTGGCTGGA	AAACTCACTGAATGGCTGACAC	60	đ	9	387-65
Yb8NBC221	AL034370	AATTCAAGCCAATGAACCAC	TCAGTGCTCTGAAGAAGCTCA	60	đ	×	431-97
Yb8NBC222	AC005552	AGCTCCCCACTCCCTACTTT	GGGAGAGTTCAGATGGGAAA	60	Ę	17	426-102
Yb8NBC223	AC004915	CCATCCACAAATATCACAAAGC	TGGGGAACCATACCTTCTTG	60	đ	7	550-226
Yb8NBC224	AC004861	GGTCACTGTATTTTCCTCAAATCC	GGTGTTTGAGTATATGTAGGTGTGC	58	đ	7	417-102
Yb8NBC225	AC005868	GAGTCCAGCCCATTTTAGCA	CCCAGCACAACATGTCATT	60	<u>u</u>	12	449-135
Yb8NBC226	AC004853	GGAAATGCCAATA GGAAATGCCAATA	CATGATGGTTTGCTGCAACT	60	£	7	537-189
Yb8NBC227	AC005799	AAGAAAGGGAAGCCTGGAG	CAGTCATCACCAGCCATGAG	60	ш	17	881-546

\sim
1
2
4
11
~
11
2
0
-
3
9
<u> </u>
ы С
e 2. (c
le 2. (c
ole 2. (c
ble 2. (c
able 2. (c
Table 2. (c

							Product size ^d
Name	Accession	5' Primer sequence (5'-3')	3' Primer sequence (5'-3')	A.T.ª	Human diversity ^b	Chr.° Loc.	Filled- empty
Yb8NBC228	AC005722	GTGTCCAGACCTGTGGCTCT	CCAGACAGCTGGGGTTTTT	62	£	17	630-310
Yb8NBC229	AC005754	CCCAGTTTTCTACTTTGCACTG	TGCCAACTGAGCACTTCTTG	00	£ !	<u>ہ</u>	411-90
YDBNBCZ30	AB014460	CAAAAIGGCCGIGIICIIII	GIGICCACGGAICTIIGCAG	29 5	≞ [<u>9</u> .	458-124
Y DBINECZ31			AIGCALLAITICUUUUAUA	00	<u></u>	<u>م</u>	181-100
YD8NBCZ3Z	ALU238/5	IGIGAAICCCAGICAGAAA Toolottoottoottoot	I I CACAGCIGGAI CAGI I CAA	<u>ያ</u> ይ	1	×;	402-83
YD6NBCZ33		I UCALAI GGAI GGAAGAI GA	GIGGICIGCAAGGGGAACAGI	90	٦I	2!	446-114
Yb8NBC234	AC005207	ACCTGCAAAAGAGGGCGTAGA	CTAATGAGGCCACCACTCAA	09	£	12	523-198
Yb8NBC235	AC005221	CATTCTGGGCACCTCACTTT	CCATCCAAATTGCCTAAGGT	09	ፎ	S	473-146
Yb8NBC236	AL021939	CTGCTTTCAGTGTCCAGGAT	CAAAGCCTATGTCTCGCTCA	09	£	Q	775-449
Yb8NBC237	AC004613	GCCAAAATCAACTGCCAAAC	TGCTGAGGATAGAGCTATAGCAGA	60	Ŀ	7	491-164
Yb8NBC238	AC004592	AATGAAGTCACCTGCCCTTG	CCTGAAGAGATGGTGGAAGG	60	ይ	ъ	437-117
Yb8NBC239	AF031078	TTGCTGACAGATCAGGGATG	TCCCCCTTCAAACCTATTCC	55	£	×	730-419
Yb8NBC240	AC004452	TTCACAGTGATTCCTGCTCA	GGTGTCTTCTGAGAAATGCCTA	09	ዊ	7	564-257
Yb8NBC241	AC004391	GGACTGTGTCTAAGGGTGTCCT	GGTAATTGGGAGCAGTTGAGA	00	Щ.	7	424-93
Yb8NBC242	AC002349	ATCCACCATCAGGGAATCAA	TGCAGATCTTATCAGCACATTG	80	£	×	450-117
Yb8NBC244	AF043945	CGGATGTCCCTTTACCACAT	CACTGCGTGGTTCATCACTT	00 0	ይ	7	403-77
Yb8NBC245	AC004029	AACCCALIGICICAIGICIAGC	CICICAICCAACAAAGICAGIGI	60	£	-	647-318
Yb8NBC246	AC002981	CACCACCTTTCAACCAGGAA	ALCGCTGGAATGTGGTTCTC	09	£ I	×	464-149
Yb8NBC247	AC002366	GCAGCACAAAGTAGTGGTTGG	TGCACCCACTTGATATGCTT	00	£	×	551-259
Yb8NBC248	AC003088	TTTCTTTCCCTCTCGCATGT	CCCTTTGGTCTCGACACTT	09	£	2	441-120
Yb8NBC249	Z98049	ATGGGCCCAAATAAAGGAT	GTGATGGCCTTGACAGCAT	62	£	9	491-148
Yb8NBC250	AC002462	GGGATCCCAGACATTGATTT	TTGCTCCTCACTTGCTCCTT	60	a .	<i>~</i> .	397-63
Yb8NBC251	AC002477	CGGCCCTGATATGTCTTTGA	TCCACAAAGGCAAATGGATA	09	<u>д</u>	×	838-500
Yb8NBC252	AC002123	GCCCACCATCGAGATCTACT	TCCACATCTCCATCAGAGCTT	62	<u>a</u> .	£	424-107
Yb8NBC253	AF001548	CAAAGGCAATCTTGGAGCTG	CCCTCCTTCTCCTTTGCTA	09	•	16	473-144
Yb8NBC254	AC002088	GGGGGAACATTACTACAGAGG	ATATATTTTGGCCAGGTACGG	55	ቲ	7	740-413
Yb8NBC255	AC000062	GGAATGAAGTGTCCACAGATGA	CAGAGGCAGGGAGACCAG	55	ድ	13	423-93
Yb8NBC256	Z73986	CCCACAATTTCCACTTCAGG	GCATTGCTTCCCTTCTATTTC	55	£	×	503-24
Yb8NBC257	Z69921	CTGCACCAAAGGAGACACACA	GCAAAACATAGAAAGCGGTGT	55	ፎ	4	508-187
Yb8NBC258	AC009429	TTAGTGGTTCCTGCATGTGG	AGCGCAGGGTTAGTAGCAAA	09		د.	431-103
Yb8NBC259	AC015600	TCCAGGAAAAGGGGAACATT	TTTCAAGAGAAAGGGCCAACA	8	•	ç.	547-227
Yb8NBC260	AC012000	TTTCCACCATCAGTCCCTCT	AGGGACTTAGGAGTGATTTTAGTG	55	•	2	661-327
Yb8NBC261	AC009478	GCAGCACTTAATGCCAATCA	TCATCGTTCTTTAGCTCCTCTG	8	• ;	7	375-50
Yb8NBC262	AC020728	AICCAGATTIGCAGGACCAC	CCICAGCIAAGIGCCAGGAG	8	<u>d</u> .	<u>،</u> ک	687-361
Yb8NBC263	AC009318	GAAAGAGGGGGGGGGGCAGCAIIGI	AAAGTTTATGCTCCCGCTGA	8	• ¦	5	518-177
Yb8NBC264	AC007619	AAGCAAGACATATGCATGAAAAA	ATCGTTTTTAAATGTTGCATACCA	09	£	12	781-475
Yb8NBC265	AC025436	I GCCAACTGAGCACTTCITG	CCCTTTGGATTCTCTCCGC	8	ᡛᡰ	<u>ع</u>	434-114
Yb8NBC266	AC009078	TALTCATTGCCTCCCTTGGA	ATGCTCCCAACCCTTTTAGG	8	£ I	16	475-149
Yb8NBC267	AC008925	GGGAAGTTTCAACAAAACCAGA	CACCACTGAATGATACCCTTTT	60	ይ	ъ	777-447
Yb8NBC268	AC016681	TGGGGATAGAGGAAGAAGACAA	CCTTTTCATCCAACTACCACTG	80	ц.	7	517-188
Yb8NBC269	AF241735	CACGCTTAACCTCTACCACCA	TGGACTCCCACTGAGATGTG	09		×	587-261
Yb8NBC270	AC007489	CTTCTGCAGCTCCTGACTGA	AGTCTAGGCTTCGGATGCAG	55	1	9	403-72
Yb8NBC271	AC023602	GGAAAACTGCATGCTAGGC	CAGTGAATGTTTCCCTGTGGT	80	£	ო	493-168
Yb8NBC272	AC023602a	TGCAGAATGTTTGTTGTTGGAG	TTTCCCTAGCTCCTTGAAATG	60		ო	537-215
Yb8NBCZ73	AC011284	CTCCTTTGTGGGGGGGGGAGAG	CATGCTCCTTGGGGAACTCTC	22	RR	~ :	431-112
Yb8NBC274	AL133305	TCAACATCAACCCCCACTGAA	TCCGAGGGAGGAATGAGATA	ន	£	14	489-168
Yb8NBCZ/5	AL122000	TTCCTGAAAAAGACUAUAUUIG	TI I GGCCTTATGI GACAAGC	81	<u>ት</u>	- - {	472-146
Yb8NBCZ76 veriec377	AL109928		GGCGGTTGTTTAGIGGAAA	55 5	•	20 20	507-183
I DONDAL 1	ALI21344		とうこととこと、ラニンシリをシワニンシン	8	•	D	10404

empera-		
ng té		•
ineali		į
at ar		
nute		
e mi		
C, on		
: 94 °		
ite at		
minu	used	
one	also	
s for	was	,
ycles	2°C	
32.0	s at 7	ĺ
, and	nutes	
uring	n mi	i
enatı	of te	
ial d	time	ĺ
C init	sion i	1
94 °C	xten	1
s at	nal e	Į
inute	Аfi	
30 m	S C	
ed 2:	n at 7	
ainpa	atior	
us re	guola	
h loc	iute e	
f eac	min	
ion o	d one	
ificati), anc	
ilqm	A.T.	;
a A	ture (4

duals tested, except for one or two homozygous or heterozygous individuals. Intermediate frequency insertion polymorphism: the Alu element is variable as to its presence or absence in at least one population. High frequency insertion polymorphism: the element is present in all individuals in the popula-tions tested, except for one or two heterozygous or absent individuals. (–) Indeterminable. (R/R) Repeat in repeat. ^e Chromosomal location determined from Accession information or by PCR analysis of NIGMS monochromosomal hybrid cell line DNA samples. ^d Empty product sizes calculated by removing the Alu element and one direct repeat from the filled sites that were identified. ^b Allele frequency was classified as: fixed present (FP), low (LF), intermediate (IF), or high frequency (HF) insertion polymorphism. Fixed present: every individual tested had the Alu element in both chromosomes. Low frequency insertion polymorphism: the absence of the element from all indivi-

		Afrie	an Ame	erican			Greenlar	nd native	es/Asian	c			Europea	n				Egyptiar	ı		
	(Genotype	s			(Genotype	es			(Genotype	es			(Genotype	s			
Elements	+/+	+/-	-/-	fAlu	Hetª	+/+	+/-	-/-	fAlu	Hetª	+/+	+/-	-/-	<i>f</i> Alu	Hetª	+/+	+/-	-/-	fAlu	Hetª	Avg. Het ^b
A. Intermediate	frequency																				
Ya5NBC5	2	5	5	0.38	0.49	3	2	8	0.31	0.44	1	6	11	0.22	0.36	2	8	4	0.43	0.51	0.45
Ya5NBC22	3	15	1	0.55	0.51	4	14	0	0.61	0.49	1	16	1	0.50	0.51	19	1	0	0.98	0.05	0.39
Ya5NBC27	0	5	14	0.13	0.24	0	8	11	0.21	0.34	2	7	9	0.31	0.44	2	7	10	0.29	0.42	0.36
Ya5NBC35	9	10	1	0.70	0.43	5	12	2	0.58	0.50	8	12	0	0.70	0.43	7	13	0	0.68	0.45	0.45
Ya5NBC37	2	2	13	0.18	0.30	1	4	12	0.18	0.30	3	2	15	0.20	0.33	4	3	10	0.32	0.45	0.34
Ya5NBC45	7	7	2	0.66	0.47	19	0	0	1.00	0.00	17	0	0	1.00	0.00	8	3	0	0.86	0.25	0.18
Ya5NBC51	4	10	3	0.53	0.51	5	6	8	0.42	0.50	6	7	7	0.48	0.51	3	8	9	0.35	0.47	0.50
Ya5NBC57	10	1	2	0.81	0.32	4	8	3	0.53	0.52	13	2	1	0.88	0.23	9	1	1	0.86	0.25	0.33
Ya5NBC61	10	6	3	0.68	0.44	5	2	10	0.35	0.47	9	7	1	0.74	0.40	8	4	5	0.59	0.50	0.45
Ya5NBC96	17	2	Õ	0.95	0.10	9	5	3	0.68	0.45	18	1	0	0.97	0.05	16	3	0	0.92	0.15	0.19
Ya5NBC102	3	2	13	0.22	0.36	0	0	6	0.00	0.00	3	4	12	0.26	0.40	2	0	13	0.13	0.24	0.25
Ya5NBC109	7	11	1	0.66	0.46	7	11	2	0.63	0.48	5	13	1	0.61	0.49	7	8	4	0.58	0.50	0.48
Ya5NBC120	7	11	0	0.69	0.44	15	4	0	0.90	0.19	8	12	0	0.70	0.43	14	5	0	0.87	0.24	0.32
Ya5NBC123	5	7	7	0.45	0.51	6	5	4	0.57	0.51	14	5	1	0.83	0.30	11	5	ĩ	0.79	0.34	0.41
Ya5NBC131	0	5	6	0.23	0.37	õ	9	8	0.27	0.40	0	11	6	0.32	0.45	0	15	2	0.44	0.51	0.43
Ya5NBC132	4	0	5	0.44	0.52	9	Ó	0	1.00	0.00	13	0	Ő	1.00	0.00	11	0	1	0.92	0.159	0.17
Ya5NBC148	7	6	6	0.53	0.51	2	6	12	0.25	0.39	0	Õ	20	0.00	0.00	0	õ	17	0.00	0.00	0.22
Ya5NBC150	17	Õ	Õ	1.00	0.00	4	Õ	14	0.22	0.36	19	Õ	1	0.95	0.10	17	Õ	1	0.94	0.11	0.14
Ya5NBC154	0	12	5	0.35	0.47	0	7	9	0.22	0.35	0	12	8	0.30	0.43	3	4	13	0.25	0.39	0.41
Ya5NBC160	2	7	9	0.31	0.44	Õ	0	19	0.00	0.00	Õ	0	19	0.00	0.00	0	4	12	0.13	0.23	0.17
Ya5NBC174	0	5	3	0.31	0.46	Õ	3	8	0.14	0.25	Õ	12	8	0.30	0.43	2	5	9	0.28	0.42	0.39
Ya5NBC182	2	9	9	0.33	0.45	9	8	Õ	0.77	0.37	5	6	7	0.44	0.51	1	10	3	0.43	0.51	0.46
Ya5NBC201	6	6	5	0.53	0.51	4	7	6	0.44	0.51	16	3	0	0.92	0.15	8	7	2	0.68	0.45	0.41
Ya5NBC210	Ő	4	15	0.11	0.19	0	1	15	0.03	0.06	0	4	16	0.10	0.19	0	4	12	0.13	0.23	0.17
Ya5NBC216	5	7	5	0.50	0.52	6	8	5	0.53	0.51	7	12	0	0.68	0.44	Ő	0	10	0.00	0.00	0.37
Ya5NBC219	0	10	9	0.26	0.40	1	12	7	0.35	0.47	0	11	9	0.28	0.41	Ő	Õ	6	0.00	0.00	0.32
Ya5NBC221	5	7	4	0.53	0.51	9	5	3	0.68	0.45	16	0	1	0.94	0.11	13	2	Õ	0.93	0.13	0.30
Ya5NBC311°	12	1	6	0.66	0.46	11	4	2	0.77	0.37	15	1	4	0.78	0.36	11	2	4	0.71	0.43	0.41
Ya5NBC313 ^c	9	3	5	0.62	0.49	4	6	6	0.44	0.51	2	8	3	0.46	0.52	5	6	3	0.57	0.50	0.50
Ya5NBC324°	Ó	8	1	0.44	0.52	0	15	1	0.47	0.51	0	14	4	0.39	0.49	0	15	1	0.47	0.51	0.51
Ya5NBC325°	õ	10	10	0.25	0.39	õ	9	9	0.25	0.39	Ő	11	9	0.28	0.41	õ	6	6	0.25	0.39	0.39
Ya5NBC327°	2	9	9	0.33	0.45	13	6	1	0.80	0.33	19	0	Ó	1.00	0.00	7	6	ĩ	0.71	0.42	0.30
Ya5NBC333°	5	5	9	0.40	0.49	4	7	8	0.49	0.49	3	8	8	0.37	0.48	5	3	5	0.50	0.52	0.50
Ya5NBC347°	17	2	1	0.90	0.19	4	, 7	8	0.40	0.49	7	8	2	0.65	0.47	11	1	5	0.68	0.45	0.40
Ya5NBC351	3	12	3	0.55	0.51	7	9	3	0.10	0.49	13	3	3	0.00	0.37	11	1	5	0.68	0.45	0.46
Ya5NBC354	0	2	16	0.06	0.11	2	6	10	0.28	0.41	10	4	5	0.63	0.48	2	4	9	0.00	0.41	0.35
Ya5NBC361°	õ	9	10	0.24	0.37	2	11	5	0.42	0.50	0	5	12	0.15	0.26	3	3	7	0.35	0.47	0.40

Table 3. Alu Ya5 subfamily associated human genomic diversity

B. High frequency																					
Ya5NBC16	20	0	0	1.00	0.00	20	0	0	1.00	0.00	10	10	0	0.75	.39	20	0	0	1.00	0.00	0.10
Ya5NBC18	17	1	0	0.97	0.06	18	1	0	0.97	0.05	20	0	0	00.1	00.0	20	0	0	1.00	0.00	0.03
Ya5NBC98	17	0	1	0.94	0.11	18	7	0	0.95	0.10	17	1	0	.88	.22	16	ю	0	0.92	0.15	0.14
Ya5NBC157	20	0	0	1.00	0.00	20	0	0	1.00	0.00	20	0	0	00.1	00.0	15	0	1	0.94	0.12	0.03
Ya5NBC212	16	1	0	0.97	0.06	20	0	0	1.00	0.00	20	0	0	00.1	00.0	18	0	0	1.00	0.00	0.01
Ya5NBC349°	19	1	0	0.98	0.05	14	7	4	0.75	0.39	18	0	0	00.1	00.00	12	0	2	0.86	0.25	0.17
C. Low frequency																					
Ya5NBC24	0	0	20	0.00	0.00	0	0	20	0.00	0.00	0	0	20 (00.0	00.0	0	0	20	0.00	0.00	0.00
Ya5NBC28	0	0	20	0.00	0.00	0	0	20	0.00	0.00	0	0	20 (00.0	00.0	0	0	20	0.00	0.00	0.00
Ya5NBC38	0	0	16	0.00	0.00	0	0	15	0.00	0.00	0	0	20 (00.0	00.0	0	0	18	0.00	0.00	0.00
Ya5NBC54	0	0	14	0.00	0.00	0	7	12	0.07	0.14	0	1	8	0.06	.11	0	1	~	0.06	0.13	0.09
Ya5NBC135	0	1	18	0.03	0.05	0	0	20	0.00	0.00	0	0	20 (00.0	00.0	0	0	17	0.00	0.00	0.01
Ya5NBC147	0	1	17	0.03	0.06	0	1	19	0.03	0.05	0	0	20 (00.0	00.0	0	1	17	0.03	0.06	0.04
Ya5NBC155	0	0	20	0.00	0.00	0	0	20	0.00	0.00	0	0	20 (00.0	00.0	0	0	20	0.00	0.00	0.00
Ya5NBC171	0	0	20	0.00	0.00	0	0	20	0.00	0.00	0	0	19 (00.0	00.0	0	0	20	0.00	0.00	0.00
Ya5NBC172	0	0	20	0.00	0.00	0	0	20	0.00	0.00	0	0	20 (00.0	00.0	0	0	18	0.00	0.00	0.00
Ya5NBC184	0	0	20	0.00	0.00	0	0	18	0.00	0.00	0	0	20 (00.0	00.0	0	0	19	0.00	0.00	0.00
Ya5NBC194	0	0	20	0.00	0.00	0	0	20	0.00	0.00	0	0	20 (00.0	00.0	0	0	20	0.00	0.00	0.00
Ya5NBC197	0	0	20	0.00	0.00	0	0	20	0.00	0.00	0	0	20 (00.0	00.0	0	0	19	0.00	0.00	0.00
Ya5NBC203	0	0	20	0.00	0.00	0	0	20	0.00	0.00	0	0	20 (00.0	00.0	0	0	20	0.00	0.00	0.00
Ya5NBC204	0	0	19	0.00	0.00	0	0	17	0.00	0.00	0	0	17 (00.0	00.0	0	0	15	0.00	0.00	0.00
Ya5NBC214	0	0	20	0.00	0.00	0	0	20	0.00	0.00	0	5	15 (0.13	.22	0	0	19	0.00	0.00	0.06
Ya5NBC223	0	0	20	0.00	0.00	0	0	20	0.00	0.00	0	0	20 (00.0	.00	0	0	19	0.00	0.00	0.00
^a This is the unk	viased he	sterozygo	osity.																		
^b Average heter	ozygosit	y is the	average	of the pc	pulation	heterozy	gosity.														
° The following	were tes	sted usin	ig DNA :	samples	from Asiá	an indivia	duals.														

Table 4. Alu	Yh8	subfamily	associated	human	genomic diversity	
	100	Sublaminy	associated	manan	genomic unversity	

		Afri	can Ame	erican			Greenlar	nd native	es/Asian	c			Europea	n				Egyptia	n		
	(Genotype	es			(Genotype	es			(Genotype	es			(Genotyp	es			
Elements	+/+	+/-	-/-	<i>f</i> Alu	Hetª	+/+	+/-	-/-	<i>f</i> Alu	Hetª	+/+	+/-	-/-	<i>f</i> Alu	Hetª	+/+	+/-	-/-	<i>f</i> Alu	Hetª	Avg. Het⁵
A. Intermediate f	requency																				
Yb8NBC3	10	2	0	0.92	0.16	12	4	0	0.88	0.23	4	6	0	0.70	0.44	9	0	0	1.00	0.00	0.207
Yb8NBC7	5	8	0	0.69	0.51	4	14	0	0.61	0.49	1	16	1	0.50	0.51	19	1	0	0.98	0.05	0.39
Yb8NBC8	8	1	0	0.94	0.11	10	4	0	0.86	0.25	11	1	2	0.82	0.30	12	2	3	0.77	0.37	0.26
Yb8NBC9	3	5	10	0.31	0.44	2	3	13	0.19	0.32	5	1	9	0.37	0.48	0	7	8	0.23	0.37	0.402
Yb8NBC10	9	9	0	0.75	0.39	9	11	0	0.73	0.41	12	7	0	0.82	0.31	11	5	0	0.84	0.27	0.344
Yb8NBC18	1	0	15	0.06	0.12	2	9	9	0.33	0.45	0	6	14	0.15	0.26	1	6	11	0.22	0.05	0.22
Yb8NBC30	8	6	0	0.79	0.35	7	11	0	0.69	0.44	5	8	0	0.69	0.44	14	2	0	0.94	0.12	0.338
Yb8NBC36	5	14	1	0.60	0.49	8	0	0	1.00	0.00	10	9	0	0.76	0.37	8	8	0	0.75	0.39	0.312
Yb8NBC48	0	4	6	0.20	0.34	0	1	2	0.17	0.33	0	3	4	0.21	0.36	0	2	3	0.20	0.36	0.347
Yb8NBC49	1	9	10	0.28	0.41	7	8	5	0.55	0.51	5	9	6	0.48	0.51	1	8	9	0.28	0.41	0.46
Yb8NBC65	7	6	5	0.56	0.51	3	10	7	0.40	0.49	7	4	9	0.45	0.51	2	5	9	0.28	0.42	0.481
Yb8NBC67	8	5	5	0.58	0.50	9	6	4	0.63	0.48	13	2	0	0.93	0.13	4	7	4	0.50	0.52	0.406
Yb8NBC71	0	3	13	0.09	0.18	3	3	10	0.28	0.42	0	5	12	0.15	0.26	2	2	9	0.23	0.37	0.304
Yb8NBC77	2	2	16	0.15	0.26	2	0	16	0.11	0.20	0	1	17	0.03	0.06	0	0	16	0.00	0.00	0.13
Yb8NBC80	1	4	15	0.15	0.26	2	5	12	0.24	0.37	3	1	15	0.18	0.31	2	5	8	0.30	0.43	0.344
Yb8NBC93	1	3	10	0.18	0.30	7	5	2	0.18	0.30	7	2	5	0.57	0.51	12	4	1	0.82	0.30	0.35
Yb8NBC96	0	7	9	0.22	0.35	0	14	3	0.41	0.50	0	3	15	0.08	0.16	0	5	7	0.21	0.34	0.338
Yb8NBC106	4	6	7	0.41	0.50	2	8	10	0.30	0.43	Õ	2	18	0.05	0.10	3	5	11	0.29	0.42	0.362
Yb8NBC108	2	11	7	0.38	0.48	2	10	7	0.37	0.48	Õ	3	11	0.11	0.20	3	4	10	0.29	0.43	0.396
Yb8NBC109	0	11	8	0.29	0.42	1	11	8	0.33	0.45	4	1	6	0.41	0.51	7	0	11	0.39	0.49	0.467
Yb8NBC120	5	8	5	0.50	0.51	5	6	8	0.42	0.50	8	7	3	0.64	0.48	4	2	6	0.42	0.51	0.499
Yb8NBC125	Õ	õ	20	0.00	0.00	0	3	16	0.08	0.15	0	3	17	0.08	0.14	0	5	14	0.13	0.24	0.132
Yb8NBC146	18	õ	2	0.90	0.19	12	1	1	0.89	0.20	16	0	2	0.89	0.20	10	1	6	0.62	0.49	0.268
Yb8NBC148	11	Õ	2	0.85	0.27	11	1	6	0.64	0.48	6	2	10	0.39	0.49	13	3	4	0.75	0.41	0.411
Yb8NBC157	19	Õ	1	0.95	0.10	6	5	1	0.71	0.43	3	9	6	0.42	0.50	16	2	2	0.85	0.26	0.322
Yb8NBC160	0	12	8	0.25	0.39	õ	13	7	0.33	0.45	0	10	10	0.25	0.39	1	6	13	0.20	0.33	0.387
Yb8NBC189	10	10	õ	0.75	0.39	18	2	0	0.95	0.10	9	7	2	0.69	0.44	18	2	0	0.95	0.10	0 254
Yb8NBC201	5	9	õ	0.59	0.50	3	8	7	0.39	0.49	9	5	6	0.58	0.50	2	9	8	0.34	0.46	0.488
Yb8NBC208	5	6	5	0.50	0.52	18	2	1	0.09	0.12	10	8	2	0.70	0.43	15	4	1	0.85	0.10	0.346
Yb8NBC225	10	9	1	0.23	0.41	12	2	4	0.72	0.10	11	6	3	0.70	0.43	8	2	5	0.60	0.50	0 4375
Vb8NBC227	10	8	2	0.70	0.43	5	6	5	0.50	0.52	18	2	0	0.20	0.10	15	4	1	0.85	0.30	0.1070
Yb8NBC230	1	2	11	0.14	0.45	0	Ő	19	0.00	0.00	0	2	15	0.06	0.10	1	4	3	0.00	0.20	0.020
Vh8NIBC237	13	4	1	0.14	0.20	12	5	2	0.00	0.00	15	2	0	0.00	0.11	10	8	1	0.33	0.30	0.217
Yb8NBC241	0	0	16	0.00	0.29	2	0	14	0.70	0.37	2	2	10	0.24	0.11	1	6	8	0.74 0.27	0.40	0.25
Yb8NBC268	Ő	13	5	0.36	0.00	0	7	12	0.15	0.31	1	9	8	0.31	0.44	0	5	12	0.15	0.11	0.37

Alu Insertion Polymorphisms and Sequence Diversity

Alu	Insertion	Polvmorphisms	and	Seauence	Diversitv
/	moornom	i olymoipilisilis	unu	ocquence	Diversity

B. High frequency	6	ſ	C	0.02	110	5	.	0	20.0	20.0	<u>т</u>	c	c	1 00	000	5	c	C	1 00	000	0.052
I DOINDC24	71	4	0	0.20	0.14	10	-	D	00	0.07	CT	D	0	1.00	0.00	77	0	D	1.UU	0.00	7cn.u
Yb8NBC26	12	1	0	0.96	0.08	14	1	0	0.97	0.07	6	1	0	0.95	0.10	13	0	0	1.00	0.00	0.061
Yb8NBC102	16	0	6	0.89	0.20	20	0	0	1.00	0.00	20	0	0	1.00	0.00	18	0	0	1.00	0.00	0.051
Yb8NBC181	14	0	0	1.00	0.00	13	0	0	1.00	0.00	8	6	с	0.63	0.48	13	0	0	1.00	0.00	0.12
Yb8NBC192	20	0	0	1.00	0.00	20	0	0	1.00	0.00	19	1	0	0.98	0.05	20	0	0	1.00	0.00	0.012
C. Low frequency																					
Yb8NBC5	б	10	4	0.47	0.01	0	2	10	0.08	0.16	0	0	18	0.00	0.00	0	0	20	0.00	0.00	0.042
Yb8NBC13	15	С	0	0.92	0.08	0	0	17	0.00	0.00	0	0	15	0.00	0.00	0	0	12	0.00	0.00	0.019
Yb8NBC69	0	0	18	0.00	0.00	0	0	17	0.00	0.00	0	0	16	0.00	0.00	0	0	16	0.00	0.00	0
Yb8NBC100	0	1	17	0.03	0.06	0	ß	15	0.13	0.22	0	1	18	0.03	0.05	0	0	0	0.00	0.00	0.083
Yb8NBC110	0	0	18	0.00	0.00	0	0	20	0.00	0.00	0	0	20	0.00	0.00	0	0	20	0.00	0.00	0
Yb8NBC126	1	9	~	0.29	0.07	0	0	20	0.00	0.00	0	0	20	0.00	0.00	0	0	20	0.00	0.00	0.018
Yb8NBC133	0	Ч	18	0.05	0.06	0	0	20	0.00	0.00	0	0	20	0.00	0.00	0	0	20	0.00	0.00	0.016
Yb8NBC134	0	4	18	60.0	0.17	0	0	17	0.00	0.00	0	0	10	0.00	0.00	0	0	19	0.00	0.00	0.042
^a This is the unl ^b Average heter ^c The following	iased he ozygosit were tes	eterozyg y is the ted usin	osity. average g DNA	of the pc samples	pulation from Asia	heterozy. an indivio	gosity. duals.														

study of human population genetics.^{35–43} The newly identified Alu insertion polymorphisms from the Ya5 and Yb8 Alu subfamilies should prove useful for the study of human population genetics.

Materials and Methods

Cell lines and DNA samples

The cell lines used to isolate primate DNA samples were as follows: human (*Homo sapiens*), HeLa (ATCC CCL2); and chimpanzee (*Pan troglodytes*), Wes (ATCC CRL1609). Cell lines were maintained as directed by the source and DNA isolations were performed using Wizard genomic DNA purification (Promega). Human DNA samples from the European, African American, Asian, Egyptian, and Greenland Native population groups were isolated from peripheral blood lymphocytes⁴⁴ available from previous studies.¹⁸

Computational analyses

Initial screening of the GenBank non-redundant and high throughput genomic sequence (HTGS) databases was performed using the Basic Local Alignment Search Tool (BLAST)⁴⁵ available from the National Center for Biotechnology Information (http://www.ncbi. nlm.nih.gov/). Copy number estimates were determined using Megablast and the draft human genome sequence database.⁴⁶ The database was searched for exact complements to the oligonucleotide 5'-CCATCCCand 5'-TGCGCCACTGCAGTCCG-GGĈTAAAAC-3' CAGTCCG-3' that are exact matches to a portion of the Alu Ya5 and Yb8 subfamily consensus sequences (respectively) that contain unique diagnostic mutations.²¹ Sequences that were exact complements to the oligonucleotides were then subjected to more detailed annotation. A region composed of 500-1000 bases of flanking DNA sequence directly adjacent to the sequences identified from the databases that matched the initial GenBank BLAST query were subjected to annotation using the RepeatMasker2 program from the University of Washington Genome Center server (http://ftp. genome.washington.edu/c/s.dll/RepeatMasker) or Censor from the Genetic Information Research Institute (http://www.girinst.org/Censor_Server-Data_Entry_ Forms.html).⁴⁷ These programs annotate the repeat sequence content of individual sequences from humans and rodents. A complete list of the Alu elements identified from the GenBank search is available from MAB. The copy numbers for each subfamily of Alu elements were determined by screening the draft sequence of the entire human genome with the oligonucleotides shown above.²³ For the Yb8 subfamily analysis, the database was searched for matches to the consensus Yb8 sequence without the seven-nucleotide duplication (287 bases). The sequences were then subjected to more detailed analysis using MegAlign (DNAStar version 3.1.7 for Windows 3.2) selecting only for Yb8 intermediate elements containing between one and seven of the Yb8 diagnostic sites.

Primer design and PCR amplification

PCR primers were designed from flanking unique DNA sequences adjacent to individual Ya5 and Yb8 Alu elements using the Primer3 software (Whitehead Institute for Biomedical Research, Cambridge, MA, USA) (http://www.genome.wi.mit.edu/cgi-bin/primer/pri-

mer3_www.cgi). The resultant PCR primers were screened against the GenBank non-redundant database for the presence of repetitive elements using the BLAST program, and primers that resided within known repetitive elements were discarded and new primers were designed. PCR amplification was carried out in 25 µl reactions using 50-100 ng of target DNA, 40 pM of each oligonucleotide primer, 200 µM dNTPs in 50 mM KCl, 1.5 mM MgCl₂, 10 mM Tris-HCl (pH 8.4) and Taq® DNA polymerase (1.25 units) as recommended by the supplier (Life Technologies). Each sample was subjected to the following amplification cycle: an initial denaturation of 150 seconds at 94 °C, one minute of denaturation at 94°C, one minute at the annealing temperature, one minute of extension at 72 °C, repeated for 32 cycles, followed by a final extension at 72°C for ten minutes. For analysis, 20 μl of each sample was fractionated on a 2 %agarose gel with 0.25 µg/ml ethidium bromide. PCR products were directly visualized using UV fluorescence. The sequences of the oligonucleotide primers, annealing temperatures, PCR product sizes and chromosomal locations for all Ya5 and Yb8 elements can be found on our website (http://129.81.225.52). Phylogenetic analysis of all the ascertained Alu elements was determined by PCR amplification of human and non-human primate DNA samples. The human genomic diversity associated with each Alu element was determined by the amplification of 20 individuals from each of four populations (African-American, Greenland Native or Asian, European and Egyptian) (160 total chromosomes). The chromosomal location of Alu repeats identified from clones that had not been previously mapped was determined by PCR amplification of National Institute of General Medical Sciences (NIGMS) human/rodent somatic cell hybrid mapping panel 2 (Coriell Institute for Medical Research, Camden, NJ).

Acknowledgments

A.M.R. was supported by a Brown Foundation fellowship from the Tulane Cancer Center. This research was supported by National Institutes of Health RO1 GM45668 (P.L.D.) and RO1 GM59290 (L.B.J. and M.A.B.), Department of the Army DAMD17-98-1-8119 (P.L.D. and M.A.B.), and Louisiana Board of Regents Millennium Trust Health Excellence Fund HEF (2000-05)-05 and HEF (2000-05)-01 (M.A.B. and P.L.D.).

References

- 1. Smit, A. F. (1999). Interspersed repeats and other mementos of transposable elements in mammalian genomes. *Curr. Opin. Genet. Dev.* **9**, 657-663.
- Deininger, P. L. & Batzer, M. A. (1993). Evolution of retroposons. In *Evolutionary Biology* (Heckht, M. K., *et al.*, eds), pp. 157-196, Plenum Publishing, New York.
- Maklalowski, W., Mitchell, G. & Labuda, D. (1994). Alu sequences in the coding regions of mRNA: a source of protein variablility. *Trends Genet.* 10, 188-193.
- 4. Makalowski, W., Zhang, J. & Boguski, M. (1996). Comparative analysis of 1,196 orthologous mouse

and human full-length mRNA and protein sequences. *Genome Res.* **6**, 846-857.

- Weiner, A., Deininger, P. L. & Efstratiadis, A. (1986). The reverse flow of genetic information: pseudogenes and transposable elements derived from nonviral cellular RNA. *Annu. Rev. Biochem.* 55, 631-661.
- 6. Boeke, J. (1997). LINEs and Alus the polyA connection. *Nature Genet.* **16**, 37-43.
- Jurka, J. (1997). Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. *Proc. Natl Acad. Sci. USA*, 94, 1872-1877.
- Sinnett, D., Richer, C., Deragon, J. M. & Labuda, D. (1992). Alu RNA transcripts in human embryonal carcinoma cells. Model of post-transcriptional selection of master sequences. J. Mol. Biol. 226, 689-706.
- Batzer, M. A., Kilroy, G. E., Richard, P. E., Shaikh, T. H., Desselle, T. D. *et al.* (1990). Structure and variability of recently inserted Alu family members. *Nucl. Acids Res.* 18, 6793-6798.
- Deininger, P. L., Batzer, M. A., Hutchison, C. & Edgell, M. (1992). Master genes in mammalian repetitive DNA amplification. *Trends Genet.* 8, 307-312.
- 11. Deininger, P. L. & Daniels, G. (1986). The recent evolution of mammalian repetitive DNA elements. *Trends Genet.* **2**, 76-80.
- Leeflang, E. P., Liu, W-M., Hashimoto, C., Choudary, P. V. & Schmid, C. W. (1992). Phylogenetic evidence for multiple Alu source genes. *J. Mol. Evol.* 35, 7-16.
- Leeflang, E. P., Liu, W-M., Chesnokov, I. N. & Schmid, C. W. (1993). Phylogenetic isolation of a human Alu flounder gene: drift to new subfamily identity. J. Mol. Evol. 37, 559-565.
- Schmid, C. & Maraia, R. (1992). Transcriptional and transpositional selection of active SINE sequences. *Curr. Opin. Genet. Dev.* 2, 874-882.
- Shen, M., Batzer, M. A. & Deininger, P. L. (1991). Evolution of the Master Alu Gene(s). *J. Mol. Evol.* 33, 311-320.
- Batzer, M. A., Deininger, P. L., Hellmann-Blumberg, U., Jurka, J., Labuda, D. *et al.* (1996). Standardized nomenclature for Alu repeats. J. Mol. Evol. 42, 3-6.
- Roy, A. M., Carroll, M. L., Kass, D. H., Nguyen, S. V., Salem, A-H. *et al.* (1999). Recently integrated human Alu repeats: finding needles in the haystack. *Genetica*, **107**, 1-13.
- Roy, A. M., Carroll, M. L., Nguyen, S. V., Salem, A-H., Oldridge, M. *et al.* (2000). Potential gene conversion and source gene(s) for recently integrated Alu elements. *Genome Res.* **10**, 1485-1495.
- Slagel, V., Flemington, E., Traina-Dorge, V., Bradshaw, H., Jr. & Deininger, P. L. (1987). Clustering and subfamily relationships of the Alu family in the human genome. *Mol. Biol. Evol.* 4, 19-29.
- Willard, C., Nguyen, H. T. & Schmid, C. W. (1987). Existence of at least three distinct Alu subfamilies. *J. Mol. Evol.* 26, 180-186.
- Batzer, M. A., Rubin, C. M., Hellmann-Blumberg, U., Alegria-Hartman, M., Leeflang, E. P. *et al.* (1995). Dispersion and insertion polymorphism in two small subfamilies of recently amplified Alu repeats. *J. Mol. Biol.* 247, 418-427.
- 22. Deininger, P. L. & Batzer, M. A. (1999). Alu Repeats and human disease. *Mol. Genet. Metab.* 67, 183-193.
- Lander, E. S., Linton, L. M., Birren, B. & Nusbaum, R. *et al.* (2001). Initial sequencing and analysis of the human genome. *Nature*, **409**, 860-921.

- 24. Arcot, S. S., Shaikh, T. H., Kim, J., Bennett, L., Alegria-Hartman, M. *et al.* (1995). Sequence diversity and chromosomal distribution of "young" Alu repeats. *Gene*, **163**, 273-278.
- 25. Labuda, D. & Striker, G. (1989). Sequence conservation in Alu evolution. *Nucl. Acids Res.* **17**, 2477-2491.
- Bird, A. P. (1980). DNA methylation and the frequency of CpG in animal DNA. *Nucl. Acids Res.* 8, 1499-1504.
- Miyamoto, M. M., Slightom, J. L. & Goodman, M. (1987). Pylogenetic relations of humans and African apes from DNA sequences in the pseudo-η-globin region. *Science*, 238, 369-373.
- Arcot, S. S., Wang, Z., Weber, J. L., Deininger, P. L. & Batzer, M. A. (1995). Alu repeats: a source for the genesis of primate microsatellites. *Genomics*, 29, 136-144.
- Maeda, N., Wu, C.-I., Bliska, J. & Reneke, J. (1988). Molecular evolution of intergenic DNA in higher primates: pattern of DNA changes, molecular clock, and evolution of repetitive sequences. *Mol. Bio. Evol.* 5, 1-20.
- Kass, D. H., Batzer, M. A. & Deininger, P. L. (1995). Gene conversion as a secondary mechanism of short interspersed element (SINE) evolution. *Mol. Cell. Biol.* 15, 19-25.
- Batzer, M. A., Gudi, V., Mena, J. C., Foltz, D. W., Herrera, R. J. & Deininger, P. L. (1991). Amplification dynamics of human-specific (HS) Alu family members. *Nucl. Acids Res.* 19, 3619-3623.
- 32. Hutchinson, G. B., Andrew, S. E., McDonald, H., Goldberg, Y. P., Grahm, R. *et al.* (1993). An *Alu* element retroposition in two families with Huntington disease defines a new active *Alu* subfamily. *Nucl. Acids Res.* 21, 3379-3383.
- Edwards, M. C. & Gibbs, R. A. (1992). A human dimorphism resulting from loss of an Alu. *Genomics*, 3, 590-597.
- 34. Sheen, F.-M., Sherry, S. T., Risch, G. M., Robichaux, M., Nasidze, I. *et al.* (2000). Reading between the LINEs: human genomic variation induced by LINE-1 retrotransposition. *Genome Res.* **10**, 1496-1508.
- Batzer, M. A., Stoneking, M., Alegria-Hartman, M., Bazan, H., Kass, D. H. *et al.* (1994). African origin of human-specific polymorphic Alu insertions. *Proc. Natl. Acad. Sci. USA*, **91**, 12288-12292.
- 36. Stoneking, M., Fontius, J. J., Clifford, S. L., Soodyall, H., Arcot, S. S. *et al.* (1997). Alu insertion polymorphisms and human evolution: evidence for a larger population size in Africa. *Genome Res.* 7, 1061-1071.
- 37. Comas, D., Calafell, F., Benchemsi, N., Helal, A. & Lefranc, G. *et al.* (2000). Alu insertion polymorphisms in NW Africa and the Iberian Peninsula: evidence for a strong genetic boundary through the Gibraltar Straits. *Hum. Genet.* **107**, 312-319.
- Hammer, M. F. (1994). A recent insertion of an Alu element on the Y chromosome is a useful marker for human population studies. *Mol. Biol. Evol.* 11, 749-761.
- 39. Jorde, L. B., Watkins, W. S., Bamshad, M. J., Dixon, M. E., Ricker, C. E. *et al.* (2000). The distribution of human genetic diversity: a comparison of mitochondrial, autosomal, and Y-chromosome data. *Am. J. Hum. Genet.* **66**, 979-988.
- Majumder, P. P., Roy, B., Banerjee, S., Chakraborty, M., Dey, B. *et al.* (1999). Human-specific insertion/ deletion polymorphisms in Indian populations and

their possible evolutionary implications. *Eur. J. Hum. Genet.* 7, 435-446.

- 41. Perna, N. T., Batzer, M. A., Deininger, P. L. & Stoneking, M. (1992). Alu insertion polymorphism: a new type of marker for human population studies. *Hum. Biol.* **64**, 641-648.
- 42. Tishkoff, S. A., Ruano, G., Kidd, J. R. & Kidd, K. K. (1996). Distribution and frequency of a polymorphic Alu insertion at the plasminogen activator locus in humans. *Hum. Genet.* **97**, 759-764.
- 43. Watkins, W. S., Ricker, C. E., Bamshad, M. J., Carroll, M. L., Nguyen, S. V. *et al.* (2001). Patterns of ancestral human diversity: an analysis of Alu-insertion and restriction-site polymorphisms. *Am. J. Hum. Genet.* 68, 738-752.
- 44. Ausabel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G. et al. (1987). In Current Protocols in Molecular Biology, New York.
- 45. Altschul, S., Madden, T., Schaffer, A., Zhang, Z., Miller, W. & Lipman, D. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucl. Acids Res.* 25, 3389-3402.
- Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. (2000). A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7, 203-214.
- 47. Jurka, J. P., Klonowski Dagman, V. & Pelton, P. (1996). CENSOR a program for identification and elimination of repetitive elements from DNA sequences. *Comput. Chem.* **20**, 119-121.

Edited by J. Karn

(Received 9 March 2001; received in revised form 7 July 2001; accepted 11 July 2001)