Retrotransposition of Alu elements: how many sources?

Richard Cordaux, Dale J. Hedges and Mark A. Batzer

Department of Biological Sciences, Biological Computation and Visualization Center, Louisiana State University, Baton Rouge, LA 70803, USA

It is generally thought that only a few Alu elements are capable of retrotransposition and that these ‘master’ sources produce inactive copies. Here, we use a network phylogenetic approach to demonstrate that recently integrated human-specific Alu subfamilies typically contain 10–20% of secondary source elements that contributed 20–40% of all subfamily members. This multiplicity of source elements provides new insight into the remarkably successful amplification strategy of the Alu family.

Alu inserts are short interspersed elements of ~300 base-pairs that have inserted in primate genomes within the last 65 million years through a mechanism termed retrotransposition [1]. They are the most abundant class of all mobile elements in the human genome, with >1,000,000 copies and making up >10% of the human genome by mass [1,2]. Alu elements have been reported to contribute to genetic disorders through insertional mutagenesis and postintegration recombination [3], to shape the architecture of the genome through segmental duplication and retrotransposition-mediated genomic deletion [4–6], and to affect proteome diversity through alternative splicing [7]. As such, their impact on the human genome and proteome has been substantial and it is therefore important to understand how these elements spread within their host genomes. One popular model of amplification of Alu elements is termed the ‘master gene’ model, in which only a few Alu elements are capable of retrotransposition and produce inactive copies [1,8,9] (Box 1). A strong argument for the master gene model is the hierarchical subfamily structure that typically characterizes Alu element sequence diversity [1,8,9]. Indeed, Alu subfamilies are collections of closely related Alu elements that share diagnostic nucleotide substitutions that are thought to arise in the master or source gene(s) and, subsequently, to represent a signature of close affinity to this master gene. However, alternative models in which many subfamily members are capable of generating new copies are also possible [9–11] (Box 1), and the actual number of truly retrotransposition-competent Alu elements in the human genome remains unresolved.

Benefits of networks over traditional phylogenetic methods

Phylogenetic methods have been widely used to study the relationships and evolution of mobile elements, including Alu elements. However, traditional phylogenetic methods used thus far assume bifurcating relationships and do not allow for persistent ancestral nodes (Box 2). Therefore, they might be inappropriate for reconstructing the genealogy of closely related sequences [12], such as those...
Box 1. Models of Alu subfamily expansion

The popular ‘master gene’ model of Alu subfamily expansion posits that a single element α generated all other subfamily members, which are themselves inactive (Figure 1a). According to this model, the relationships between subfamily members will be star-like, with all inactive copies derived from the α element. By contrast, the extreme opposite model (termed the transposon model) posits that all subfamily members are capable of producing new elements (Figure 1c). In terms of relationships between subfamily members, this model is distinguished from the master gene model by its absence of radiating structure from a central node. In between these two extreme scenarios are intermediate models suggesting that several or many subfamily members are active and contribute to Alu subfamily expansion (Figure 1b). With this intermediate model, relationships among elements are expected to be at least partly star-like, but also to show varying proportions of elements that are not directly connected to the center of radiation.

![Figure 1](https://example.com/figure1.png)

Figure 1. Three models of Alu expansion. The active elements are represented in blue and the inactive elements in white. Branch lengths and circle size in the genealogies are arbitrary.

of Alu subfamilies (Box 2). These properties of Alu subfamilies are taken into account by network phylogenetic approaches (Box 2), making such methods better suited for studying evolutionary relationships of Alu elements. Here, we use networks [13] to investigate the relationships and expansion patterns of Alu subfamilies that have recently expanded in the human genome. What mobility model best fits the patterns of Alu subfamilies’ sequence diversity? Are Alu subfamily members other than the ‘master’ gene capable of producing new copies? If they are, what is the proportion of these ‘secondary’ master genes and how large is their contribution to Alu subfamily expansions?

How many Alu element sources?
We analyzed 706 Alu elements belonging to all of the human-specific Alu subfamilies reported to date that have <310 members, which is the maximum number of sequences handled by the software NETWORK version 3.1 [13]. We used Alu subfamily sequence alignments

Box 2. Network versus traditional phylogenetic methods

Traditional phylogenetic methods have been designed to investigate interspecific relationships. Interspecific relationships are hierarchical because they are the product of reproductive isolation over long periods of time, leading to high divergence and non-overlapping gene pools. Thus, interspecific genealogies, as estimated by traditional phylogenetic methods, can typically be represented by strictly bifurcating trees (in which each ancestral branch splits into two descendant branches). In this case, all sampled units occupy terminal branches whereas all internal nodes (representing ancestors) are unsampled and therefore reconstructed.

By contrast, intraspecific relationships, or in a broader sense, relationships among closely related samples (such as Alu subfamily members), can be characterized by low divergence, multifurcating relationships and persistence of ancestral nodes. Datasets showing reduced variation will have fewer characters for analysis, which can result in poor resolution or incorrect inferences if traditional phylogenetic methods designed for highly divergent datasets are used. In addition, Alu subfamily members might be derived from a single source or master gene (see Box 1), which means that one element could have generated more than two descendant elements. This would yield Alu subfamily genealogies with true multifurcations (as illustrated in Box 1, Figure 1a), which violate the principle of bifurcating relationships assumed by traditional phylogenetic methods. Finally, Alu master or source genes might persist in their host genome and coexist with their descendants. This means that both ancestral and descendant Alu subfamily members can be sampled, which violates the principle of traditional phylogenetic methods according to which ancestral types are unsampled and have to be reconstructed.

Contrary to traditional methods, network phylogenetic approaches have been designed for investigating the relationships of closely related samples, and they allow for persistent ancestral nodes and multifurcations. The network approach is based on the parsimony principle and connects datasets in the way that requires the smallest number of evolutionary steps. However, contrary to traditional phylogenetic trees, networks depict alternative evolutionary pathways that require the same minimum number of steps, which create reticulations or loops in the network. In the absence of recombination, reticulations result from homoplasy (when two characters are identical by state – because of parallel or reverse mutations – and not by descent). The absence of homoplasy in the dataset results in networks without reticulations.
Table 1. Information on seven human-specific Alu subfamilies analyzed in this study

<table>
<thead>
<tr>
<th>Alu subfamily</th>
<th>Sample size</th>
<th>Proportion of secondary source genes (%)</th>
<th>Contribution of secondary source genes (%)</th>
<th>IPL* (%)</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No correction</td>
<td>After correction</td>
<td>No correction</td>
<td>After correction</td>
</tr>
<tr>
<td>Ya5a2</td>
<td>33</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Ya8</td>
<td>36</td>
<td>14</td>
<td>17</td>
<td>22</td>
<td>28</td>
</tr>
<tr>
<td>Yb9</td>
<td>58</td>
<td>15</td>
<td>20</td>
<td>33</td>
<td>44</td>
</tr>
<tr>
<td>Yc1</td>
<td>232</td>
<td>8</td>
<td>12</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>Yd6</td>
<td>96</td>
<td>10</td>
<td>15</td>
<td>14</td>
<td>21</td>
</tr>
<tr>
<td>Yg6</td>
<td>150</td>
<td>9</td>
<td>13</td>
<td>26</td>
<td>37</td>
</tr>
<tr>
<td>Yi6</td>
<td>101</td>
<td>10</td>
<td>16</td>
<td>30</td>
<td>42</td>
</tr>
<tr>
<td>All except Ya5a2b</td>
<td>9</td>
<td>14</td>
<td></td>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td>All except Ya5a2b</td>
<td>11</td>
<td>16</td>
<td></td>
<td>23</td>
<td>32</td>
</tr>
</tbody>
</table>

*Insertion polymorphism level of Alu subfamilies.

These Alu subfamilies encompass a wide range of insertion polymorphism levels (IPL) per subfamily (80–10%, Table 1). The IPL is the proportion of Alu subfamily members that are polymorphic for presence/absence in the human population. As the IPL decreases with the time since subfamily expansion, it can be used as a proxy for estimating relative expansion times of the different Alu subfamilies that are independent of DNA sequence data.

The networks of older subfamilies (IPL < 25%) showed multidimensional reticulations, which is suggestive of homoplasy in the data (Box 2). This is not surprising given the high number of CpG dinucleotides contained in Alu elements, which mutate at least at a sixfold higher rate compared with non-CpG dinucleotides [15,16]. When CpG dinucleotides were excluded, most reticulations disappeared from the networks. These results suggest that homoplasy is primarily attributable to CpG dinucleotides and that non-CpG sites are more stable and thus informative for reconstructing Alu subfamily genealogies. Therefore, to ensure that homoplasy would not affect the results, further analyses were performed using complete Alu sequences for the youngest Alu subfamilies (IPL > 35%), whereas CpG sites were disregarded for older subfamilies (IPL < 25%).

The Yb9 subfamily network displays a star-like phylogeny in which 36% of the elements fall in the central node (Figure 1). This is typically expected under the ‘master’ gene model, where one Alu locus (the master gene) generated the other members of the subfamily. The node α can be inferred to be the ancestral node (and thus correspond to the original master or source gene sequence) of the Yb9 subfamily because: (i) it is the most frequent sequence type found in the subfamily; and (ii) it occupies a central position in the network [12]. Thus, overall, the spread of the Yb9 subfamily in the human genome is consistent with the master gene model of a single driver. Similar results were obtained for all other Alu subfamilies, in that the networks also displayed starlike topologies with the central node (α) corresponding to the most frequent sequence types found in each subfamily. However, within all Alu subfamilies, there were some sequence types that were not directly connected to the master sequence (α) (Figure 1) and others that were directly connected to the master sequence α, but were encompassing several Alu loci (βx types; Figure 1).

Because hypervariable sites were removed from the analyses when appropriate and the networks do not show any excess of multidimensional reticulations (Figure 1, Box 2), homoplasy can be considered as negligible. Thus, it is publish in the original papers characterizing these subfamilies (Table 1), except for Ya5a2, Ya8 and Yb9 subfamilies, whose elements were extracted from the July 2003 assembly of the human genome sequence, through a Basic Local Alignment Tool (BLAT) screening [14] of the human genome database. Sequence alignments are available on the authors’ website (http://batzerlab.lsu.edu). These Alu subfamilies encompass a wide range of insertion polymorphism levels (IPL) per subfamily (80–10%, Table 1). The IPL is the proportion of Alu subfamily members that are polymorphic for presence/absence in the human population. As the IPL decreases with the time since subfamily expansion, it can be used as a proxy for estimating relative expansion times of the different Alu subfamilies that are independent of DNA sequence data.

The networks of older subfamilies (IPL < 25%) showed multidimensional reticulations, which is suggestive of homoplasy in the data (Box 2). This is not surprising given the high number of CpG dinucleotides contained in Alu elements, which mutate at least at a sixfold higher rate compared with non-CpG dinucleotides [15,16]. When CpG dinucleotides were excluded, most reticulations disappeared from the networks. These results suggest that homoplasy is primarily attributable to CpG dinucleotides and that non-CpG sites are more stable and thus informative for reconstructing Alu subfamily genealogies. Therefore, to ensure that homoplasy would not affect the results, further analyses were performed using complete Alu sequences for the youngest Alu subfamilies (IPL > 35%), whereas CpG sites were disregarded for older subfamilies (IPL < 25%).

The Yb9 subfamily network displays a star-like phylogeny in which 36% of the elements fall in the central node (Figure 1). This is typically expected under the ‘master’ gene model, where one Alu locus (the master gene) generated the other members of the subfamily. The node α can be inferred to be the ancestral node (and thus correspond to the original master or source gene sequence) of the Yb9 subfamily because: (i) it is the most frequent sequence type found in the subfamily; and (ii) it occupies a central position in the network [12]. Thus, overall, the spread of the Yb9 subfamily in the human genome is consistent with the master gene model of a single driver. Similar results were obtained for all other Alu subfamilies, in that the networks also displayed starlike topologies with the central node (α) corresponding to the most frequent sequence types found in each subfamily. However, within all Alu subfamilies, there were some sequence types that were not directly connected to the master sequence (α) (βx types; Figure 1) and others that were directly connected to the master sequence α, but were encompassing several Alu loci (βx types; Figure 1).

Because hypervariable sites were removed from the analyses when appropriate and the networks do not show any excess of multidimensional reticulations (Figure 1, Box 2), homoplasy can be considered as negligible. Thus, it is
unlikely that a α type and its most closely related β^* type could be both independently and directly derived from the α type and would have accumulated substitutions independently at the same positions. If so, the most parsimonious explanation for these patterns is that α sequences are derived from β^* types rather than directly from the α type. The same reasoning leads us to conclude that for β^* types with $x \geq 2$, the two or more sequences of any given node are not independently and directly derived from the α type, but rather that one of the loci gave rise to the other members of the given β^* node. We conclude that β^* with $x \geq 2$ and β^* types correspond to secondary source genes capable of amplification within the Alu subfamilies. The network approach shows that Alu subfamilies examined all contain between 3% and 15% of such secondary source or submaster genes (Table 1, Figure 1). We also estimate that these secondary source genes generated between 3% and 33% of the total members of each Alu subfamily (Table 1, Figure 1). On average, we find that Alu subfamilies comprise ~9% of secondary source genes that contributed ~20% of subfamily copies. These values could underestimate the true proportions because it is likely that the α type of each Alu subfamily might encompass several loci that could contribute new subfamily members. To correct for this possibility, we assumed that α nodes contained the same proportion of secondary source genes as estimated for each subfamily without correction. The corresponding number of elements was added to the uncorrected number of secondary source elements initially estimated in each subfamily, allowing estimation of a corrected proportion of secondary sources in the subfamilies (Table 1). This conservative correction suggests that Alu subfamilies show on average ~15% of secondary source genes contributing ~30% of subfamily members.

Multiple sources and the evolutionary success of Alu elements

In summary, we confirm here that human Alu subfamilies do not follow a single ‘master’ gene model of expansion. Indeed, the ‘sprout’ or multiple source model [9–11] best explains the observed patterns of Alu subfamily sequence variation, in which Alu subfamilies contain secondary source genes that can contribute a substantial portion of subfamily members. It is noteworthy that the Alu subfamilies examined here consistently show 10–20% of secondary sources contributing 20–40% of the subfamily members, regardless of the IPL or subfamily copy number. Although these estimates might vary for the oldest Alu subfamilies (with IPL <10%), this considerably strengthens the credibility of the sprout model of human Alu subfamily expansion over other previously proposed models, because it spans multiple Alu subfamilies that have amplified at different times throughout human evolution. The existence of a considerable number of active elements with lower levels of amplification instead of a few hyperactive ‘master’ genes might have been the evolutionary strategy that enabled Alu elements to bypass mutational inactivation, negative selection and/or putative host defense mechanisms that could have limited their expansion. This ultimately contributed to make Alu elements the most successful class of mobile elements (in terms of copy number) in the human genome.

Acknowledgements

We thank David Ray, Jerilyn Walker and Jinchuan Xing for comments on an earlier version of the manuscript. This research was supported by Louisiana Board of Regents Millennium Trust Health Excellence Fund HEP (2000-05)-05 and (2000-05)-01 (M.A.B.), and by National Science Foundation grant BCS-0218338 (M.A.B.).

References

11 Matera, A.G. et al. (1990) Recently transposed Alu repeats result from multiple source genes. Nucleic Acids Res. 18, 6019–6023
14 Kent, W.J. (2002) BLAT – the BLAST-like alignment tool. Genome Res. 12, 656–664
16 Batzer, M.A. et al. (1990) Structure and variability of recently inserted Alu family members. Nucleic Acids Res. 18, 6793–6798

0168-9652/2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tig.2004.07.012