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With more than 1.2 million copies, Alu elements are one of the most important sources of structural variation in
primate genomes. Here, we compare the chimpanzee and human genomes to determine the extent of Alu
recombination-mediated deletion (ARMD) in the chimpanzee genome since the divergence of the chimpanzee and
human lineages (;6 million y ago). Combining computational data analysis and experimental verification, we have
identified 663 chimpanzee lineage-specific deletions (involving a total of ;771 kb of genomic sequence) attributable
to this process. The ARMD events essentially counteract the genomic expansion caused by chimpanzee-specific Alu
inserts. The RefSeq databases indicate that 13 exons in six genes, annotated as either demonstrably or putatively
functional in the human genome, and 299 intronic regions have been deleted through ARMDs in the chimpanzee
lineage. Therefore, our data suggest that this process may contribute to the genomic and phenotypic diversity
between chimpanzees and humans. In addition, we found four independent ARMD events at orthologous loci in the
gorilla or orangutan genomes. This suggests that human orthologs of loci at which ARMD events have already occurred
in other nonhuman primate genomes may be ‘‘at-risk’’ motifs for future deletions, which may subsequently contribute
to human lineage-specific genetic rearrangements and disorders.
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Introduction

Mobile elements are a major source of genetic diversity in
mammals [1,2]. Alu elements, a family of short interspersed
elements (SINEs), emerged ;65 million y ago (Mya) and have
successfully proliferated in primate genomes with .1.2
million copies [2–5]. Alu elements consist of a left monomer
and a right monomer [2,6]. Each of these monomers
independently evolved from 7SL-RNA [7] and subsequently
fused into the dimeric Alu element in the primate lineage [6].
Alu elements are known to be associated with primate-specific
genomic alterations by several mechanisms, including de
novo insertion, insertion-mediated deletion, and unequal
recombination between Alu elements [8–11]. The Alu family
consists of a number of subfamilies, which maintain high
sequence identity among themselves (70%–99.7%) [12–15].

Mispairing between two Alu elements has been shown to be
a frequent cause of deletion or duplication in the host
genome [10,11,16]. A recent study of human-specific Alu
recombination-mediated deletion (ARMD) reported a signifi-
cant number of events associated with Alu elements [10]. An
ARMD may arise through either interchromosomal recombi-
nation by mismatch of sister or nonsister chromatids during
meiosis [17] or by intrachromosomal recombination between
two Alu elements on the same chromosome. Previously, Sen et
al. [10] found 492 human-specific ARMD events responsible
for ;400 kb of deleted genomic sequence in the human
lineage [10]. Here, we report 663 chimpanzee-specific ARMD
events identified from comparative analysis of the chimpan-
zee and human genomes. The chimpanzee-specific ARMD
events deleted a total of ;771 kb of genomic sequence in
chimpanzees, including exonic deletions in six genes, some-

time after the divergence of the human and chimpanzee
lineages (;6 Mya). ARMD events in the chimpanzee genome
have generated large deletions (up to ;32 kb) relative to
human-specific ARMD events. Taking deletions in both the
human and chimpanzee lineages into account, we suggest that
ARMD events may have contributed to genomic and
phenotypic diversity between humans and chimpanzees.

Results

A Genome-Wide Analysis of Chimpanzee-Specific ARMD
Events
To investigate chimpanzee-specific ARMD loci, we first

computationally compared the chimpanzee (panTro1) and
human (hg17) genome reference sequences. A total of 1,538
ARMD candidates were initially retrieved using panTro1.
These loci were converted to panTro2 (March 2006), which,
due to the better quality of the sequence assembly, allowed us
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to eliminate a number of loci that mimicked authentic ARMD
loci. Through a comparison of panTro1 and panTro2, we
discarded 258 of the 1,538 loci (Table 1). The remaining 1,280
loci were manually inspected using the repetitive DNA
annotation utility RepeatMasker (http://www.repeatmasker.
org/cgi-bin/WEBRepeatMasker). In terms of local sequence
architecture, human-specific mobile element insertions be-
tween two preexisting adjacent Alu elements could be
computationally confused with a chimpanzee-specific dele-
tion. Because the consensus sequences of the human-specific
mobile elements (e.g., AluYb8, AluYa5, SVA, and L1Hs) have
been well established in RepeatMasker, we were able to
identify and eliminate from our analysis 189 human-specific
insertion loci, including processed pseudogenes. The remain-
ing 1,091 candidate ARMD loci were inspected using triple
alignments of human (hg18), chimpanzee (panTro2), and
rhesus macaque (rheMac2) sequences at each locus, and also

on the basis of their target site duplication (TSD) structures
(see Materials and Methods). After manual inspection, 342 of
the candidate ARMD loci were examined by PCR to verify
their status as authentic ARMD loci. Finally, combining
computational and experimental results, 663 loci were
confirmed as bona fide chimpanzee-specific ARMD loci
(Table 1 and Dataset S1).
In this study, we combined computational data mining and

wet-bench experimental verification, an approach that is
optimal for identifying lineage-specific insertions and dele-
tions [10]. Whereas Sen et al. [10] computationally compared
the human and chimpanzee genomes, in our analysis, the
draft version of the rhesus macaque genome sequence was
used as an outgroup when filtering computational output for
false positives (see Materials and Methods). This allowed us to
eliminate 215 candidate ARMD loci prior to wet-bench
verification, minimizing the cost and time needed to confirm
authentic chimpanzee-specific ARMD events, as compared
with the previous human-specific ARMD study.

Genomic Deletion Through Chimpanzee-Specific ARMD
Events
Since the human-chimpanzee divergence ;6 Mya, chim-

panzee-specific ARMD events have occurred 1.3 times as
often as their human-specific counterparts (663 chimpanzee-
specific versus 492 human-specific events). The total amount
of genomic DNA deleted by ARMD events from the
chimpanzee genome is estimated to be 771,497 bp. However,
when we consider that the average indel divergence between
the human and chimpanzee genomes has been estimated at
5.07% [18], the precise amount of DNA deleted through
ARMDs in the chimpanzee genome could be anywhere
between ;733 and ;811 kb (65.07% of ;771 kb). The size
distribution of DNA sequences deleted through chimpanzee-
specific ARMD events ranged from 111 to 31,861 bp, with
1,164 bp average and 615 bp median ARMD sizes. Similar to
the pattern observed in human-specific ARMD events [10], a
histogram of the size distribution of chimpanzee-specific
ARMDs is skewed toward deletions of shorter size, with ;68%
(449 of 663) of the deletion events shorter than 1 kb (Figure
1). As expected, about 70% of the deleted genomic DNA

Table 1. Summary of Chimpanzee-Specific ARMD Events

Classification Number of Loci

Computationally predicted deletion loci 1,538

Discarded 513

Discarded after manual inspection 240

Failed PCR verificationa 10

Wrong assembly in panTro1 258

Wrong assembly in panTro2 5

Candidate ARMD events 1,025

Computational error (Alu insertion in human) 362

Confirmed by PCR analysis 98

Analysis based on TSD and/or triple alignment 264

ARMDs 663

Confirmed by PCR analysis 233

Analysis based on TSD and/or triple alignment 430

aThe loci could not be amplified due to the presence of other repeat elements in the flanking sequence.
doi:10.1371/journal.pgen.0030184.t001
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Author Summary

The recent sequencing of a number of primate genomes shows that
small segments of DNA known as Alu elements are found repeatedly
along all chromosomes, and indeed comprise ;10% of the human
genome. Although older Alu elements that have been in the
genome for a long time accumulate some random mutations,
overall these elements retain high levels of sequence identity
among themselves. The presence of many near-identical Alu
elements located close to each other makes primate genomes
prone to DNA recombination events that generate genomic
deletions of varying sizes. Here, by scanning the chimpanzee
genome for such deletions, we determined the role of the Alu
recombination-mediated deletion process in creating structural
differences between the chimpanzee and human genomes. Using
a combination of computational and experimental techniques, we
identified 663 deletions, involving the removal of ;771 kb of
genomic sequence. Interestingly, about half of these deletions were
located within known or predicted genes, and in several cases, the
deletions removed coding exons from chimpanzee genes as
compared to their human counterparts. Alu recombination-medi-
ated deletion shows signs of being a major sculptor of primate
genomes and may be responsible for generating some of the
genetic differences between humans and chimpanzees.



sequences are composed of repetitive elements (Table 2), of
which Alu element sequences account for ;64% (338 kb of
528 kb). Interestingly, the amount of sequence deleted
through the ARMD process from the chimpanzee genome is
twice as much as that from the human genome during the
same period of time. Ten chimpanzee-specific ARMD events
were found to have each deleted .7.3 kb of sequence (Figure
1); ARMD sizes this large were not observed in the human-
specific study. Among these, the largest deleted sequence is

31,861 bp in length, within which only the SLC9A3P2
pseudogene and two intergenic regions are found in the
ancestral sequence (i.e., human ortholog).
To examine the possible effects of the removal of ancestral

genomic sequences during the 663 chimpanzee lineage-
specific ARMD events, we retrieved the pre-recombination
sequences (i.e., unaltered orthologs) from the human genome.
About 46% (305 of 663) of the ARMD events were located
within known or predicted RefSeq genes (http://www.ncbi.
nlm.nih.gov/mapview/map_search.cgi?taxid¼9606), and five
ARMD events generated 13 exonic deletions in six genes
annotated as either demonstrably or putatively functional in
the human genome. Among them, two ARMD events deleted
exons from demonstrably functional genes in the NBR2
(neighbor for BRCA1 [breast cancer 1] gene 2) and HTR3D (5-
hydroxytryptamine [serotonin] receptor 3 family member D)
genes. While no alternative pre-mRNA spliced forms exist for
the NBR2 gene, the HTR3D gene shows three alternative pre-
mRNA spliced forms in the human according to the ECR
Browser (http://ecrbrowser.dcode.org). Among them, one of
the HTR3D isoforms does not contain exon 3, which was
deleted from the chimpanzee genome. Thus, chimpanzees
could produce a similar protein to the HTR3D isoform
mentioned above, because the ARMD event deleted the entire
exon 3 and portions of some introns in the chimpanzee
genome. However, we cannot rule out that the ARMD event
has produced cryptic splicing sites causing either non-
functionalization or subfunctionalization of HTR3D. The
remaining three chimpanzee ARMD events generated exonic
deletions in four putative human genes of unknown function
(LOC339766, LOC127295, LOC729351, and LOC645203).

Figure 1. Size Distribution of Chimpanzee-Specific ARMD Events

Size distribution of chimpanzee-specific ARMD events (red bars) compared with that of human-specific ARMD events (blue bars), displayed in 200-bp
bin sizes.
doi:10.1371/journal.pgen.0030184.g001

Table 2. Classification of Genomic DNA Deleted by ARMDs in
Chimpanzee Lineage

Classification Amount (bp)

Alua 338,489

MIR 11,527

L1 82,872

L2 10,663

L3 1,135

LTR 48,650

MER1 7,638

MER2 9,336

Other DNA repeats 5,385

RNA repeats 229

Simple repeats 9,174

Satellite repeats 2,908

Unique DNA 243,491

Total 771,497

aIncludes truncated Alu elements.
doi:10.1371/journal.pgen.0030184.t002
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To further analyze the genomic sequences lost due to the
ARMD process in the chimpanzee genome, we used the
National Center for Biotechnology Information’s (NCBI)
UniGene utility (http://www.ncbi.nlm.nih.gov/sites/entrez?
db¼unigene) to look at the orthologous loci in the human
genome, which contained sequences that would have been
present in the chimpanzee genome if the ARMD events had
not occurred. UniGene indicated that 164 ARMD events had
caused deletions of coding sequence on the basis of
expressed sequence tags (ESTs), although this number
decreased to 94 when a high threshold indicating protein
similarities (�98% ProtEST) was selected (Table S1). This
number is much higher than the exonic deletions in six
genes generated by ARMD events reported above when
RefSeq annotation was used instead.

Structural Features of ARMD Events
Ten different Alu subfamilies are associated with chimpan-

zee-specific ARMD events: AluJo, AluJb, AluSx, AluSq, AluSp,
AluSg, AluSg1, AluSc, AluY, and AluYd8. Their composition
and ratio in chimpanzee-specific ARMD events are remark-
ably similar to those in human-specific ARMD events (Figure
2). The Alu subfamily analysis shows that the number of
elements from each Alu subfamily involved in the ARMD
process is proportional to the genome-wide copy number of
each Alu subfamily in the chimpanzee genome. For example,
the AluS subfamily has contributed the most to chimpanzee-
specific ARMD events because it is the most successful Alu
subfamily in the primate genome in terms of copy number.
However, we found one exception to this rule; the AluJ
subfamily is more ubiquitous than the AluY subfamily in both
the chimpanzee and human genomes (Figure 3), but more
members of the AluY subfamily were found to be involved in
the ARMD process. The major expansion of the AluJ
subfamily in primate genomes occurred ;60 Mya, whereas
the AluY subfamily expanded only ;24 Mya [14,19,20]. On the
basis of these ages, the individual members of the AluJ
subfamily have likely accumulated more point mutations than
those of the AluY subfamily. As a result, AluY copies have
more sequence identity among them than do the AluJ copies,
which results in increased involvement in ARMD events. In
addition, we investigated intra-Alu subfamily recombination-
mediated deletions for both the AluJ and AluY subfamilies. Of
the 103 events involving at least one AluJ element in the
ARMD event, only 15 (14.6%) involved recombination
between two AluJ elements. The AluY subfamily shows a

higher rate of intra-subfamily recombination than the AluJ
subfamily, with 219 loci in which at least one AluY element
was involved in the recombination event, and 57 (26%) that
were between two AluY elements. This suggests that the rate
of recombination between AluY elements is 1.8 times higher
than that between AluJ elements. Taken together, this
suggests that, in addition to the copy number of each Alu
subfamily, the level of sequence identity between the
individual Alu elements in the genome is also an important
variable influencing ARMD events.
From a mechanistic viewpoint, four different types of

recombination may occur between two Alu elements. An Alu
element consists of left and right monomers. In the first type,
comprising about 88% (583 of 663) of the ARMD events in
our study, the recombination occurred between the same
monomers of the two Alu elements. A second type of
recombination occurred between two Alu elements in which
one had previously integrated into the middle of the other.
Such insertions are commonly found in both the chimpanzee
and human genomes because each Alu element bears two
endonuclease cleavage sites (59-TTTT/A-39) between its two
monomers. About 8% (51 of 663) of the ARMD events in the
chimpanzee genome are products of this second type of
recombination. The third type of recombination, seen in 25
of the 663 events (;4%), involved recombination between the
left and right monomers on two separate Alu elements. The
last type occurred between oppositely oriented Alu elements.
Instances of this type of ARMD are very rare, found only in
four of the 663 cases (0.6%). This style of recombination is
likely to be uncommon because the stretch of sequence
identity between two Alu elements oriented in opposite
directions to one another is too short to frequently generate
unequal homologous recombination. Instead, these two Alu
elements are more likely to cause Alu recombination-
mediated inversions or A-to-I RNA editing through the
posttranscriptional modification of RNA sequences [21].

Analysis of the ARMD ‘‘Hotspots’’
To analyze the frequency of recombination at different

positions along the length of the Alu elements (which we refer
to as ‘‘recombination breakpoints’’) at our ARMD loci, we
aligned the two intact human Alu elements involved in each
recombination event with the single chimeric Alu element
from the chimpanzee genome (Figure S1). The windows
between the two Alu elements range in size from 1 to 116 bp,

Figure 2. Alu Subfamily Composition in ARMD Events

Proportion of all Alu elements involved in chimpanzee- and human-
specific ARMD events (red and blue bars, respectively) that belong to
each Alu subfamily as noted.
doi:10.1371/journal.pgen.0030184.g002

Figure 3. Comparison of Alu Subfamilies Involved in ARMD Events

Proportion of Alu elements involved in chimpanzee-specific (red bars)
and human-specific (blue bars) ARMD events versus proportion of total
Alu elements in each subfamily in the chimpanzee genome (gray bars).
doi:10.1371/journal.pgen.0030184.g003
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with a mean of 20 bp and a mode of 22 bp. In general, the
ARMD loci generated by intra-Alu subfamily recombination,
as well as the recombination events between relatively young
Alu elements, show longer stretches of sequence identity than
others. Through this analysis, we identified a recombination
‘‘hotspot’’ on the Alu consensus sequence (59-TGTAATCC-
CAGCACTTTGGGAGG-39), located between positions 24
and 45 (Figure 4). This recombination hotspot is congruent
with previous studies of gene rearrangements in the human
LDL-receptor gene involving Alu elements [22], and with the
pattern of recombination found in the 492 human-specific
ARMD events [10]. Of these studies, the former suggested that
the hotspot sequence (therein called the ‘‘core sequence’’)
might induce genetic recombination because it subsumes the
prokaryotic chi sequence (the pentanucleotide motif
CCAGC), which is known to stimulate recBC-dependent
recombination [23]. We searched for and found the CCAGC
motif at four places (positions 31–35, 85–89, 166–170, and
251–255) along the Alu consensus sequences. The percentages
of breakpoints found at these positions are 0.00886%,
0.00336%, 0.00406%, and 0.00372%, respectively. Among
these, the percentages of breakpoints found at the latter
three positions are similar to the average percentage of
breakpoints across the entire length of the Alu elements
(0.0035%) in our ARMD events. The only spot where the
motif is found that showed a substantially higher percentage
of breakpoints is the one located at positions 31–35, which is
within our proposed hotspot. Therefore, this motif may
invoke, but does not seem to be essential for the generation
of ARMD events.

Interestingly, the 22-bp hotspot sequence contains no CpG
dinucleotides. These CpG dinucleotides have been shown to
mutate approximately six times faster than other dinucleo-
tides in Alu elements [24] due to cytosine methylation and
subsequent deamination [25]. In addition, when we aligned
the consensus sequences of the 10 different Alu subfamilies
involved in ARMDs, we found that the hotspot sequence is
located within the longest stretch of their conserved regions.
Furthermore, using the software utility WebLogo [26], we
confirmed that this 22-bp sequence is the most conserved

region among Alu elements involved in ARMD events (Figure
4). Therefore, the recombination hotspot that we have
identified, by virtue of having an increased level of
conservation among the Alu subfamilies involved in the
ARMDs in our study, has potentially allowed frequent
recombination between Alu repeats from different Alu
subfamilies to occur.

Genomic Environment of ARMD Events
Most Alu elements located in the primate genomes that

have been sequenced (e.g., human, chimpanzee, and rhesus
macaque) exist in high-GC content regions [3–5], and also
have high GC content (an average of ;62.7%). Moreover, it
has also been previously reported that human-specific ARMD
events preferentially occur in areas of high GC content
(;45% GC content, on average) [10]. To analyze the genomic
environment of chimpanzee-specific ARMD events, we
estimated the GC content of 20 kb (610 kb in either
direction) of neighboring sequence for each ARMD locus.
Our results indicate that the chimpanzee-specific ARMDs are
similar to human-specific ARMDs in having a tendency to
occur in GC rich regions (45.2% GC content, on average).
This preference is correlated with the distribution of Alu
elements involved in ARMDs (Figure 3) because the genomic
distribution of ARMD events would in effect have an a priori
dependence on the preferred locations of Alu elements after
insertion of the different Alu subfamilies. About 74% of
chimpanzee-specific ARMDs are associated with the older Alu
subfamilies, AluJ and AluS. Although young Alu subfamilies
are found in AT-rich, gene-poor regions, the older Alu
subfamilies are most often found in GC-rich, gene-rich
regions [3]. This could account for the preferential occur-
rence of ARMD events in GC-rich regions. Moreover, the
local rate of genomic recombination has been shown to be
positively correlated with GC content [27], which may further
explain the observed distribution of ARMD events. About
44% of genomic DNA deleted through ARMD events were Alu
sequences in the human ortholog. This could indicate that
regions of high local Alu element density within chromosomes
are more likely to provide increased opportunities for local

Figure 4. Recombination Breakpoints during Chimpanzee-Specific ARMD Events

Percentage of ARMD events found to have breakpoints at different positions along an Alu consensus sequence. The ‘‘hotspot’’ region is represented by
a conserved 22-bp nucleotide sequence found in 634 ARMD loci (the first and second types of ARMD events) using WebLogo analysis (http://weblogo.
berkeley.edu). The dashed line represents the average percentage (0.0035%) of breakpoints across the entire length of the Alu consensus sequence.
doi:10.1371/journal.pgen.0030184.g004
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recombination, a trend previously noticed during analysis of
the global genomic distribution of human lineage-specific
ARMD events [10].

To further characterize the genomic environment of
chimpanzee-specific ARMD events, we estimated the gene
density of the genomic regions flanking each chimeric Alu
element resulting from the process by extracting 4 Mb of
flanking genomic sequences (62 Mb in either direction), and
counting the number of known or predicted chimpanzee
RefSeq genes. The gene density of the flanking regions of
chimpanzee-specific ARMD events is estimated to be, on
average, one gene per 60.7 kb, which is similar to that of
human-specific ARMD events (one gene per 66 kb). This
indicates that the global distribution of chimpanzee-specific
ARMD events is biased towards gene-rich regions, since the
global average gene density in the chimpanzee genome is
approximately one gene per 112 kb. To test for any
relationship between the size of an ARMD and its flanking
gene density or GC content, we performed a correlation test.
While the r-values for both tests were negative, as would be
expected given the danger of large deletions in gene-rich
areas, the low p-values indicate that no significant correlation
exists between the two variables in either test (gene density: r
¼�0.028; p ¼ 0.472; GC content: r ¼�0.065; p ¼ 0.095).

Chimpanzee-Specific ARMD Polymorphism
In order to estimate the polymorphism rates in chimpan-

zees, we analyzed and amplified a total of 50 chimpanzee-
specific ARMD loci on a panel composed of genomic DNA
from 12 unrelated chimpanzee individuals (see Materials and
Methods). Our results show that the polymorphism level of
chimpanzee-specific ARMDs (28%) is about two times higher
than the polymorphism rate of human-specific ARMD events
(15%) [10], which is in general agreement with the poly-
morphism levels from previous studies of chimpanzee- or
human-specific retrotransposons (e.g., Alu and L1 elements)
[28,29].

Incomplete Lineage Sorting and Parallel Independent
ARMDs

About 32% of the ARMD candidates were found to have
ambiguous TSD structures and a triple alignment that proved
too complex to assign ARMD status to the locus solely on the
basis of our computational output. These loci were verified
experimentally using PCR (see Materials and Methods) to
determine the authenticity of the chimpanzee-specific
ARMDs and identify false positives in the computational
data, which were usually caused by human-specific Alu
insertions. However, 16 ambiguous loci were identified at
which human-specific Alu insertions were not present. In 11
of these loci, the human and gorilla genomes appear to have
two Alu elements, while the chimpanzee and orangutan
genomes have only one element at the orthologous position.
DNA sequence analysis of the PCR products classified five of
these 11 loci as chimpanzee-specific ARMDs, with the second
of the two recombining Alu elements having integrated into
the host genome after the divergence of orangutan and the
common ancestor of humans, chimpanzees, and gorillas
(Figure 5A). Four out of the 11 loci show a pattern consistent
with incomplete lineage sorting, in which the ARMD event
occurred before the divergence of great apes and was still
polymorphic at the time of speciation. Subsequently, the

chimeric Alu elements produced by these ARMD events
became fixed in the chimpanzee and orangutan lineages while
the two original Alu elements involved in the ARMDs were
fixed in the human and gorilla genomes (Figure 5B).
Incomplete lineage sorting has been reported in cases of
retrotransposon insertion polymorphism involving closely
related species [28,30]. In cases where the time between any
genomic event and a subsequent speciation is very short,
incomplete lineage sorting can easily occur. The remaining
two of the 11 ambiguous loci were identified as parallel
independent ARMD events in separate primate genomes by
aligning the pre-recombination sequence and chimeric Alu
elements (Figure 5C). These events suggest that orthologous
loci may experience two independent lineage-specific ARMDs
at different times (i.e., chimpanzee-specific ARMDs and
orangutan-specific ARMDs).
In contrast, PCR analysis of the remaining five ambiguous

loci (from the 16 referred to above) showed that humans and
orangutans have two Alu elements, whereas chimpanzees and
gorillas have only one at the orthologous position. Of these
five loci, three showed a pattern suggesting incomplete
lineage sorting events, while the other two were parallel
independent ARMDs. For one of the loci displaying a parallel
independent ARMD event, the structural characteristics of
the two chimeric Alu elements resulting from independent
recombination events are clearly different between the
chimpanzee and gorilla genomes. The 574-bp chimpanzee
genomic deletion occurred between the left monomer on the
first Alu and the right monomer on the second Alu, whereas
the 708-bp genomic deletion in the gorilla happened between
the two left monomers of the two Alu elements.
These results indicate that at least ;0.9% of chimpanzee-

specific ARMD loci (2 of 233 loci which were analyzed by
PCR) are shared by the gorilla genome and another ;0.9%
are shared by the orangutan genome, due to parallel
independent ARMDs at two different time points in two
separate primate genomes. As such, the presence of inde-
pendently occurring ARMD events in both the human and
chimpanzee genomes could lead to false negative events being
missed during the previous analysis done by Sen et al. [10],
although the frequency of such false negatives is likely to be
very low. In addition, we believe that the human orthologs of
the chimpanzee-specific ARMD loci represent sites predis-
posed for potential future ARMDs in the human genome that
could generate human lineage-specific rearrangements and
genetic disorders. Identifying putative ARMD hotspot ge-
nomic regions is not surprising based upon the frequency of
Alu-mediated recombination events that have given rise to
mutations in a number of different loci, including the LDLR
and MLL1 genes [11,31–33].

Discussion

Differential Level of Lineage-Specific ARMD Events
Despite the high level of overall similarity between their

genomes, humans and chimpanzees have subtly different
genomic landscapes because of alterations such as insertions,
deletions, inversions, and duplications after their divergence
from a common ancestral primate [8–11,34,35]. Although
from a mechanistic viewpoint, the chimpanzee-specific
ARMD events are similar to the human-specific ones, the
total number and size of deletions are substantially different
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between the two lineages. One reason for the observed
differences between these two lineage-specific ARMD pat-
terns may be the increased genetic diversity of the chimpan-
zee population as compared to the human population, which
is known to have experienced a significant reduction in its
effective population size after the divergence of humans and
chimpanzees [36], leading to a consequent reduction in
genetic diversity. These results are supported by the higher
polymorphism level for chimpanzee-specific ARMDs than
human-specific ARMDs.

Balance of Chimpanzee Genome Size
Alu elements as well as other retrotransposons can

contribute to the size expansion of primate genomes by
increasing their copy numbers and causing homology-
mediated segmental duplications [37–39]. However, the
retrotransposon-mediated increase in genome size is not
unilateral, because several processes such as retrotransposon-
mediated deletions and recombination-mediated deletions
concurrently act in the opposite direction, causing reduction
in genome size as well [8–10]. Retrotransposon-mediated
negative control of genome size has been well documented in
plants such as Arabidopsis and rice [40,41].

In this study, we analyzed the contribution of ARMDs to
genome size regulation in the chimpanzee genome by
estimating an Alu-mediated sequence turnover rate, which
is the amount of sequence increase caused by chimpanzee-
specific Alu insertions relative to the amount of reduction by
the chimpanzee-specific ARMD process. The copy number of
chimpanzee-specific Alu elements (i.e., those that inserted
after the divergence of human and chimpanzee) is ;2,340,
accounting for ;700 kb of inserted sequence in the
chimpanzee lineage [3], while the amount of sequence deleted
by chimpanzee-specific ARMDs is ;771 kb. Therefore, within
the past ;6 million y, the genome size of chimpanzees has not

expanded but rather has contracted by ;71 kb, when
considering the combined effects of Alu retrotransposition
and recombination-mediated deletion (i.e., the Alu-mediated
sequence turnover rate is more than 100% in the chimpanzee
genome). This observation suggests that ARMD events
efficiently counteract genomic expansion caused by novel
Alu inserts in the chimpanzee genome when compared to the
human genome. A previous analysis of human-specific ARMD
events indicates that the Alu-mediated sequence turnover
rate is ;20% in the human genome [10]. This significantly
different turnover rate between the two species could be
explained by differences in the tempo of Alu amplification
(i.e., higher Alu retrotransposition activity in the human
genome) and rates of ARMD events (i.e., higher ARMD
activity in the chimpanzee genome). Ultimately, it is worth
noting that at least in the chimpanzee lineage, concurrent Alu
insertion/ARMD mechanisms have balanced the gain and loss
of sequences during Alu-mediated genomic alterations.

Retrotransposition of Chimeric Alu Elements
To investigate whether chimeric Alu elements are able to

retrotranspose in the chimpanzee genome, we tried to find
progeny of the 663 chimpanzee-specific chimeric Alu elements
using the BLAST-Like Alignment Tool (BLAT) program
(http://genome.ucsc.edu/cgi-bin/hgBlat). However, we failed
to recover any such elements in the chimpanzee genome for
one or more of a number of reasons. First, Alu elements
involved in ARMD events are expected to be relatively old (i.e.,
more than 6 million y) because our comparative analysis
detects only ARMD events involving Alu elements that were
inserted into the genome before the divergence of humans
and chimpanzees. Therefore, most of the ARMD-associated
Alu elements probably lost their ability to retrotranspose
before the Alu–Alu recombination process. In reality, the
contribution of chimpanzee-specific young Alu elements to

Figure 5. Incomplete Lineage Sorting and Parallel Independent ARMD Events

The DNA template used in each reaction is listed on top of the gel chromatograph (M, 100-bp ladder; H, human; C, chimpanzee; G, gorilla; O,
orangutan). The large and small sizes of PCR products indicate two Alu elements and one Alu element, respectively. The thunderbolts represent
recombination events between two Alu elements, causing ARMDs. Possible scenarios that explain the observed chromatograph: (A) chimpanzee-
specific ARMDs, (B) incomplete lineage sorting of an ARMD event, and (C) parallel independent ARMD events.
doi:10.1371/journal.pgen.0030184.g005
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the ARMD process may be extremely limited due to their low
copy number (;2,000 copies) in the chimpanzee genome [3].
Indeed, ARMD events generated by the relatively young AluY
subfamilies account for 0.19% of the total AluY elements in
the chimpanzee genome. Second, only a few source genes are
responsible for new Alu subfamily amplification through
retrotransposition. Although some Alu subfamilies (e.g.,
AluYc1) are still active in the chimpanzee genome [3,29], it is
improbable that their source gene(s) are involved in the Alu–
Alu recombination events. Similarly during an earlier analysis
[10], we investigated the retrotransposition ability of 492
human-specific ARMD-generated chimeric Alu elements and
were unable to recover their progeny as well.

ARMD as an Endogenous Process Affecting Human and
Chimpanzee Variation

Recently, the genomic relationship and genetic divergence
between the human and chimpanzee genomes have been the
subjects of extensive comparative genomic analyses on the
basis of their respective draft genome sequences [3,35,42–44].
However, these studies have not focused on Alu-mediated
genomic deletions in the chimpanzee lineage, aside from the
14 Alu retrotransposition-mediated deletions reported pre-
viously [9].

Thus, our study forms the first comprehensive analysis of
recombination-mediated genomic alteration by Alu elements
in a nonhuman primate (chimpanzee) lineage. We found 305
chimpanzee-specific deletions within protein-coding genes as
annotated by the RefSeq gene annotation database, 299 genes
from which introns were deleted, and six genes in which
thirteen exons were deleted. Remarkably, two chimpanzee-
specific ARMD events deleted exons from genes demonstra-
bly functional in the human lineage (NBR2 and HTR3D),

providing direct proof that the ARMD process contributes to
creating phenotypic differences between humans and chim-
panzees. The NBR2 gene is located near the BRCA1 gene on
Chromosome 17, which is responsible for tumor repressor
activity in the human genome, and shares a common
promoter for transcription, forming a bidirectional tran-
scriptional unit with BRCA1. Although the complete NBR2
cDNA sequence is ;1.3 kb, it has a short open reading frame
(112 amino acids), and is subject to nonsense-mediated decay
[45,46]. In humans, this gene is suppressed by a non–tissue-
specific protein complex that binds to its first intron (i.e., the
18-bp repressor element) [47]. However, in the chimpanzee
lineage, an ARMD event occurred between the third intron
and the 39 flanking region, causing an exonic deletion (Figure
6A). Thus, this ARMD event could potentially inhibit NBR2
gene expression in the chimpanzee genome, regardless of
whether or not the repressor element is present. Although the
exonic deletion of the NBR2 gene has been independently
reported through a comparative analysis of cancer genes
between the human and chimpanzee genomes, the previous
analysis did not report what caused this genetic difference
between human and chimpanzee genomes [48]. Our study of
chimpanzee-specific ARMDs illuminates the underlying mo-
lecular mechanism for this deletion.
A chimpanzee-specific ARMD event also deleted the first

coding exon of HTR3D, a functional gene in humans (Figure
6B). This gene belongs to the 5-HT3 serotonin receptor-like
gene family, which has been recently characterized [49]. The
5-HT3D subunit is not a functional receptor on its own (i.e., a
homomeric receptor), but when it binds to the 5-HT3A

subunit to form the heteroligomeric receptor, 5-HT, max-
imum response is significantly increased as compared to the
homomeric 5-HT3A receptor [50]. HTR3D is primarily

Figure 6. Exonic Deletions Caused by Two ARMD Events

Black arrows represent the direction of transcription, and gray and black boxes indicate the noncoding exons and coding exons, respectively. Green and
purple arrows indicate elements from two different Alu subfamilies, and dual-color arrows indicate chimeric Alus generated by ARMD events (map is not
drawn to scale).
(A) An exonic deletion within the NBR2 gene. The AluSg and AluY elements are located within the third intron and the 39 flanking sequence,
respectively, in the human genome. The exon4 sequence is deleted due to an ARMD event in the chimpanzee lineage.
(B) An exonic deletion within the HTR3D gene. The AluSx and AluSq elements are located within the second and third introns, respectively, in the human
genome. The exon3 sequence, which includes the initiation codon ATG, is deleted due to an ARMD event in the chimpanzee lineage.
doi:10.1371/journal.pgen.0030184.g006
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expressed in the gastrointestinal tract [50], where serotonin is
synthesized extensively [51]. We speculate that the exonic
deletion in this gene caused by the chimpanzee-specific
ARMD event may lead to a reduction in serotonin levels in
the chimpanzee lineage, and thus have an impact on
physiological variation between the human and chimpanzee
lineages.

The analyses using the RefSeq and UniGene annotations
(see Results) indicate that ARMD events could have affected
the expression of many genes. Moreover, intronic or inter-
genic deletions caused by ARMD events may also affect the
levels of gene expression in both the human and chimpanzee
genomes through alteration of splicing patterns and loss of
transcription factor binding sites, further contributing to the
divergence of the human and chimpanzee lineages. Addi-
tional studies of the functional genomics of the genes altered
in both human and chimpanzee ARMD events will be
instructive and provide new insight into the genetic and
phenotypic differences between the two species.

Conclusion
Retrotransposon-mediated genomic rearrangement could

be one of the major factors responsible for the lineage-
specific changes in genomes that ultimately lead to speci-
ation. Comparative investigations of the ARMD events
apparent between the human and chimpanzee genomes
indicate that this process plays an important role in the
biological differences between humans and chimpanzees, and
provides a reliable record of lineage-specific evolutionary
histories due to the nearly homoplasy-free nature of these
mutations. Moreover, in the chimpanzee lineage, the chim-
panzee-specific ARMD process has completely counteracted
the genomic expansion caused by new Alu inserts since the
divergence of the chimpanzee and human lineages. The
existence of parallel independent ARMD events found at the
orthologous loci of some of the 663 chimpanzee-specific
ARMD events suggest that other chimpanzee-specific ARMD
orthologs in humans may be predisposed to undergo
recombination between the two Alu elements in the future.
These ARMD orthologous loci may be sites of unstable
structure in humans as well as other apes, because they still
preserve the pre-recombination structure that has proven
itself susceptible to unequal recombination in the chimpan-
zee lineage.

Materials and Methods

Computational search and manual inspection of chimpanzee-
specific ARMD loci. To computationally screen the chimpanzee
genome for potential ARMD loci, we used a technique previously
described by Sen et al. [10] in a study of human lineage-specific
ARMD events, with the distinction that, for this analysis, the query
and target genomes were reversed. In summary, we extracted 400 bp
of 59 and 39 flanking sequence for all chimpanzee Alu elements
(PanTro1; November 2003 freeze) and joined the two 400 bp
sequences to form a single ‘‘query’’ sequence. A best match for each
query sequence was determined by using BLAT [52] against the
reference human genome (hg17; May 2004 freeze). Then, the
sequence in the human genome (the ‘‘hit’’) found between the
orthologs of the two 400 bp stretches of the query was extracted and
aligned with the chimpanzee Alu element sequence initially used to
design the query (the ‘‘query Alu’’) using a local installation of the
NCBI bl2seq utility.

One hallmark of de novo Alu insertion is the presence of TSDs
flanking each side of the Alu element, generated by the target-site
primed reverse transcription process [1,53–55]. However, the single
chimeric Alu element created by an ARMD event lacks matching TSD

structures in the chimpanzee because it is comprised of fragments
from a pair of Alu elements with mutually unique TSDs at the
orthologous ancestral locus [10]. If a potential ARMD locus exhibited
the structures of a valid ARMD as described by Sen et al. [10], we
accepted the computational detection as an authentic ARMD locus.
In addition, we used the BLAT software utility [52] to compare the
human, chimpanzee, and rhesus macaque genomes at each potential
ARMD locus. If the two Alu elements in the human genome that are
considered to be the pre-recombination Alu elements for an ARMD
locus are shared with the rhesus macaque genome at orthologous loci,
despite the presence or absence of TSDs, the single Alu element
remaining at the orthologous chimpanzee locus is most likely a
chimeric element generated an ARMD event. On the basis of these
features, we manually inspected 1,538 potential ARMD loci retrieved
by the computational data analysis. However, some loci displayed
ambiguous TSD structure or remained ambiguous after analysis using
the triple alignment. These loci were subjected to PCR analysis and, if
necessary, DNA sequencing in order to confirm or eliminate each as
being products of bona fide ARMD events.

PCR amplification and DNA sequence analysis. PCR analysis was
performed using four different primate species as templates. The cell
lines used to isolate DNA samples corresponding the primate species
are as follows: human (Homo sapiens) HeLa (CCL2; American Type
Culture Collection [ATCC], http://atcc.org), common chimpanzee
‘‘Clint’’ (Pan troglodytes; NS06006B), gorilla (Gorilla gorilla; AG05251)
and orangutan (Pongo pygmaeus; AG05252A). To evaluate polymor-
phism rates, we amplified 50 randomly selected ARMD loci on a
common chimpanzee population panel composed of 12 unrelated
individuals of unknown geographic origin obtained from the South-
west Foundation for Biomedical Research (San Antonio, Texas,
United States).

Oligonucleotide primers for the PCR amplification of ARMD
events were designed using the Primer3 utility (http://www-genome.
wi.mit.edu/cgi-bin/primer/primer3_www.cgi). The sequences of the
oligonucleotide primers, annealing temperatures, and PCR product
sizes are shown in Table S2. Each PCR amplification was performed in
25-ll reactions using 10–50 ng DNA, 200 nM of each oligonucleotide
primer, 200 lM dNTPs in 50 mM KCl, 1.5 mMMgCl2, 10 mM Tris-HCl
(pH 8.4), and 2.5 U Taq DNA polymerase. Each sample was subjected
to an initial denaturation step of 5 min at 95 8C, followed by 35 cycles
of PCR at 1 min of denaturation at 95 8C, 1 min at the annealing
temperature, and 1 min of extension at 72 8C, followed by a final
extension step of 10 min at 72 8C. PCR amplicons were loaded on
1%–2% agarose gels, depending on the amplicon sizes, stained with
ethidium bromide, and visualized using UV fluorescence. In cases
where the expected size of the PCR product was greater than 1.5 kb,
iTaq (Bio-Rad, http://www.bio-rad.com) or Ex Taq polymerase (Ta-
KaRa, http://www.takara-bio.com) were used, following the manufac-
turer’s suggested protocols.

When necessary, individual PCR amplicons were gel purified using
the Wizard gel purification kit (Promega, http://www.promega.com)
and cloned into vectors using the TOPO-TA Cloning kit (Invitrogen,
http://www.invitrogen.com) according to the manufacturer’s instruc-
tions. DNA sequencing was performed using dideoxy chain-termi-
nation sequencing [56] on an Applied Biosystems ABI3130XL
automated DNA sequencer (Applied Biosystems, http://www.
appliedbiosystems.com). Raw sequence reads were assembled using
DNASTAR’s Seqman program in the Lasergene version 5.0 software
package (http://www.dnastar.com).

Analysis of flanking sequences. For each chimpanzee-specific
ARMD locus, 10 kb of flanking sequence upstream and downstream
were collected using a combination of in-house Perl scripts and the
nibFrag utility bundled with the BLAT software package. The GC
content of the flanking regions of each ARMD locus was calculated by
analyzing the combined 20 kb of flanking sequence using another in-
house Perl script, which excluded Ns from the analysis. Gene density
around individual ARMD loci was estimated using the NCBI Map
Viewer utility, run on Build 2.1 of the Pan troglodytes genome (http://
www.ncbi.nlm.nih.gov/mapview/map_search.cgi?taxid¼9598). The
neighboring 2 Mb of sequence 59 and 39 to each chimeric chimpanzee
Alu element was analyzed, and the number of genes found within this
combined 4 Mb were noted. All computer programs used are
available from the authors upon request.

Supporting Information

Dataset S1. Dataset of 663 ARMD Loci

Found at doi:10.1371/journal.pgen.0030184.sd001 (2.2 MB TXT).
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Figure S1. Sequence Alignment of a Chimeric Chimpanzee Alu and
Two Intact Human Alu Elements

The chimeric chimpanzee Alu sequence is shown at the top. The
sequences of the intact human AluSx and AluJb involved in the ARMD
events are shown below. The dots below represent the same
nucleotides as the chimeric chimpanzee Alu sequence, and the dashes
represent the gaps. A yellow box on the sequences denotes the
recombination window.

Found at doi:10.1371/journal.pgen.0030184.sg001 (49 KB DOC).

Table S1. Exonic Deletions Caused by ARMD Events Based on the
UniGene Utility

Found at doi:10.1371/journal.pgen.0030184.st001 (41 KB XLS).

Table S2. Oligonucleotide Primer Information for Chimpanzee-
Specific ARMDs

Found at doi:10.1371/journal.pgen.0030184.st002 (69 KB XLS).

Accession Numbers

The gorilla and orangutan DNA sequences generated during the
course of this study have been deposited in GenBank (http://www.
ncbi.nlm.nih.gov/Genbank) under accession numbers EF682150–

EF682182. The GenBank accession numbers for the three HTR3D
isforms discussed in this article are NM_182537, BC101090, and
AJ437318.
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