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Genomic structural variants (SVs) are abundant in humans, differing from other forms of variation in extent, origin and
functional impact. Despite progress in SV characterization, the nucleotide resolution architecture of most SVs remains
unknown. We constructed a map of unbalanced SVs (that is, copy number variants) based on whole genome DNA
sequencing data from 185 human genomes, integrating evidence from complementary SV discovery approaches with
extensive experimental validations. Our map encompassed 22,025 deletions and 6,000 additional SVs, including
insertions and tandem duplications. Most SVs (53%) were mapped to nucleotide resolution, which facilitated
analysing their origin and functional impact. We examined numerous whole and partial gene deletions with a
genotyping approach and observed a depletion of gene disruptions amongst high frequency deletions. Furthermore,
we observed differences in the size spectra of SVs originating from distinct formation mechanisms, and constructed a
map of SV hotspots formed by common mechanisms. Our analytical framework and SV map serves as a resource for
sequencing-based association studies.

Introduction
Unbalanced structural variants (SVs), or copy number variants
(CNVs), involving large-scale deletions, duplications and insertions
form one of the least well studied classes of genetic variation. The
fraction of the genome affected by SVs is comparatively larger than
that accounted for by single nucleotide polymorphisms1 (SNPs),
implying significant consequences of SVs on phenotypic variation.
SVs have already been associated with diverse diseases, including
autism2,3, schizophrenia4,5 and Crohn’s disease6,7. Furthermore,
locus-specific studies suggest that diverse mechanisms may form
SVs de novo, with some mechanisms involving complex rearrange-
ments resulting in multiple chromosomal breakpoints8,9.

Initial microarray-based SV surveys focused on large gains and
losses10–12, with recent advances in array technology widening the
accessible size spectrum towards smaller SVs1,13. Microarray-based
surveys commonly mapped SVs to approximate genomic locations.
However, a detailed SV characterization, including analyses of SV

origin and impact, requires knowledge of precise SV sequences.
Advances in sequencing technology have enabled applying
sequence-based approaches for mapping SVs at a fine scale14–21.
These approaches include: (1) paired-end mapping (or read pair
‘RP’ analysis) based on sequencing and analysis of abnormally map-
ping pairs of clone ends14,22–24 or high-throughput sequencing frag-
ments15,17,18; (2) read-depth (‘RD’) analysis, which detects SVs by
analysing the read depth-of-coverage16,21,25–27; (3) split-read (‘SR’)
analysis, which evaluates gapped sequence alignments for SV detec-
tion28,29; and (4) sequence assembly (‘AS’), which enables the fine-
scale discovery of SVs, including novel (non-reference) sequence
insertions30–32. Sequence-based SV discovery approaches have previ-
ously been applied to a limited (,20) number of genomes, leaving the
fine-scale architecture of most common SVs unknown.

Sequence data generated by the 1000 Genomes Project (1000GP)
provide an unprecedented opportunity to generate a comprehensive
SV map. The 1000GP recently generated 4.1 terabases of raw sequence
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in two pilot projects targeting whole human genomes33 (Supplemen-
tary Table 1). These studies comprise a population-scale project,
termed ‘low-coverage project’, in which 179 unrelated individuals
were sequenced with an average coverage of 3.63, including 59
Yoruba individuals from Nigeria (YRI), 60 individuals of European
ancestry from Utah (CEU), 30 of Han ancestry from Beijing (CHB),
and 30 of Japanese ancestry from Tokyo (JPT; the latter two were
jointly analysed as JPT1CHB). In addition, a high-coverage project,
termed the ‘trio project’, was carried out, with individuals of a CEU
and a YRI parent-offspring trio sequenced to 423 coverage on average.

We report here the results of analyses undertaken by the Structural
Variation Analysis Group of the 1000GP. The group’s objectives were
to discover, assemble, genotype and validate SVs of 50 base pairs (bp)
and larger in size, and to assess and compare different sequence-based
SV detection approaches. The focus of the group was initially on
deletions, a variant class often associated with disease9, for which rich
control data sets and diverse ascertainment approaches exist1,13,22,28.
Less focus was placed on insertions and duplications34 and none on
balanced SV forms (such as inversions). Specifically, we applied nine-
teen methods to generate an SV discovery set. We further generated
reference genotypes for most deletions, assessed the SVs’ functional
impact and stratified SV formation mechanism with respect to variant
size and genomic context.

Assessment of SV discovery methods
We incorporated the SV discovery methods into a pipeline (Fig. 1a, b),
with the goal of ascertaining different SV types and assessing each
method for its ability to discover SVs. The methods detected SVs by
analysing RD, RP, SR and AS features, or by combining RP and RD
features (abbreviated as ‘PD’). Altogether we generated 36 SV call-sets
by applying the methods on trio and low-coverage whole genome

sequence data, and by identifying SVs as genomic differences relative
to a human reference, corresponding to the reference genome, or to a set
of individuals (that is, population reference; Supplementary Table 2).
We initially identified SVs as deletions, tandem duplications, novel
sequence insertions and mobile element insertions (MEIs) relative to
the human reference. Subsequent comparative analyses involving prim-
ate genomes enabled us to classify SVs as deletions, duplications, or
insertions relative to inferred ancestral genomic loci, reflecting mechan-
isms of SV formation (see below). DNA reads analysed by SV discovery
methods were initially mapped to the human reference genome using a
variety of alignment algorithms. Most of these algorithms mapped each
read to a single genomic position, although one algorithm (mrFAST16)
also considered alternative mapping positions for reads aligning to
repetitive regions (see Supplementary Tables 2–4 for method-specific
parameters and full SV call-sets). We filtered each call-set by excluding
SVs ,50 bp, which are reported elsewhere33. Many SVs showed support
from distinct SV discovery methods, as exemplified by a common dele-
tion, previously associated with body-mass index35 (BMI), that we iden-
tified with RP, RD and SR methods (Fig. 1c). Nonetheless, we observed
notable differences between methods (Fig. 2a–c) in terms of genomic
regions ascertained (Supplementary Fig. 1), accessible SV size-range
(Fig. 2a), and breakpoint precision (Fig. 2c, Supplementary Fig. 2).

To estimate call-set specificity, we carried out extensive validations
(Methods), including PCRs for over 3,000 candidate loci and micro-
array data analyses for 50,000 candidate loci (Supplementary Tables 3,
4 and Supplementary Fig. 3). We combined PCR and array-based
analysis results to estimate false discovery rates (FDRs), and found
that eight call-sets (three deletion, one tandem duplication and four
insertion call-sets) met the pre-specified specificity threshold33

(FDR # 10%), whereas the other call-sets yielded lower specificity
(FDRs of 13–89%).
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Figure 1 | SV discovery and genotyping in population scale sequence data.
a, Schematic depicting the different modes (that is, approaches) of sequence-
based SV detection we used. The RP approach assesses the orientation and
spacing of the mapped reads of paired-end sequences14,15 (reads are denoted by
arrows); the RD approach evaluates the read depth-of-coverage25,26; the SR
approach maps the boundaries (breakpoints) of SVs by sequence alignment28,29;
the AS approach assembles SVs30–32. b, Integrated pipeline for SV discovery,

validation and genotyping. Coloured circles represent individual SV discovery
methods (listed in Supplementary Table 2), with modes indicated by a colour
scheme: green, RP; yellow, RD; purple, SR; red, AS; green and yellow, methods
evaluating RP and RD (abbreviated as ‘PD’). c, Example of a deletion, previously
associated with BMI35, identified independently with RP (green), RD (yellow) and
SR (red) methods. Grey dots indicate position and mapping quality for individual
sequence reads. Targeted assembly confirmed the breakpoints detected by SR.
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We assessed the sensitivity of deletion discovery methods further
by collating data from four earlier surveys1,13,22,28 into a gold standard
(Methods, Supplementary Tables 5, 6 and Supplementary Fig. 4a),
and specifically assessing the detection sensitivity for an individual
sequenced at high-coverage (NA12878) as well as for an individual
sequenced at low-coverage (NA12156). Unsurprisingly, given the
typical trade-off between sensitivity and specificity, in the trios the
highest sensitivities were achieved by RD and RP methods with
FDR . 10% (Fig. 2b). By comparison, in the low-coverage data, the
individual method with the greatest accuracy (FDR 5 3.7%) was the
second most sensitive based on our gold standard (Fig. 2b), and the
most sensitive when expanding the gold standard to a larger set of
individuals (Supplementary Fig. 4b). This method, Genome STRiP (to
be described elsewhere; Handsaker, R. E., Korn, J. M., Nemesh, J. and
McCarroll, S. A., unpublished results), integrated both RP and RD
features (PD), implying that considering different evidence types can
improve SV discovery.

Construction of our SV discovery set
To construct our SV discovery set (‘release set’), we joined calls from
different discovery methods corresponding to the same SV with a

merging approach that was aware of each call-set’s precision in SV
breakpoint detection (Supplementary Fig. 5 and Methods). Most SVs
in the release set (61%) were contributed by individual methods meet-
ing the pre-defined specificity threshold (FDR # 10%). The remain-
ing 39% of calls were contributed by lower specificity methods
following experimental validation. Altogether, the release set com-
prised 22,025 deletions, 501 tandem duplications, 5,371 MEIs and
128 non-reference insertions (Table 1, Supplementary Table 7).
With our gold standard we estimated an overall sensitivity of deletion
discovery of 82% in the trios, and 69% in low-coverage sequence
(Fig. 2b) using a 1-bp overlap criterion. When instead applying a
stringent 50% reciprocal overlap criterion for sensitivity assessment
(which required SV sizes inferred on different experimental platforms
to be in close agreement), our sensitivity estimates decreased by 12%
and 18%, respectively, in trio and low-coverage sequence (Supplemen-
tary Table 8). We examined further an alternative SV discovery
approach that involved the pairwise integration of deletion discovery
methods, and tested its ability to discover SVs without relying on the
inclusion of lower specificity calls following experimental validation
(this approach resulted in the generation of the ‘algorithm-centric set’;
Fig. 1b). Whereas this alternative approach resulted in an increased
number (by ,13%) of high-specificity (FDR , 10%) calls compared to
the release set (Supplementary Text), overall it resulted in fewer SV
calls owing to its decreased sensitivity at the lower (,200 bp) SV size
range. In the following analyses we thus focused on the release set.

Extent and impact of our SV discovery set
We next assessed the extent and impact of our SV discovery (release)
set. The median SV size was 729 bp (mean 5 8 kilobases), approxi-
mately four times smaller than in a recent tiling CGH-based study1,
reflecting the high resolution of DNA-sequence-based SV discovery.
We also compared our set to a recent survey of SVs in an individual
genome36 based on capillary sequencing and array-based analyses24,
and observed a similar size distribution for deletions, but differences
in the size distributions of other SV classes, reflecting underlying
differences in SV ascertainment (Supplementary Fig. 6). By comparing
our SVs to databases of structural variation and to additional personal
genome data sets, we classified 15,556 SVs in our set as novel, with an
enrichment of low frequency SVs and small SVs amongst the novel
variants (Methods and Supplementary Text).

A major advantage of sequence-based SV discovery is the nucleo-
tide resolution mapping of SVs. We initially mapped the breakpoints
of 7,066 deletions and 3,299 MEIs using SR and AS features. Using the
TIGRA-targeted assembly approach (Chen, L. et al., unpublished
results) we further identified the breakpoints of an additional 4,188
deletions and 160 tandem duplications, initially discovered by RD, RP
and PD methods (Methods, Supplementary Tables 3, 4). Altogether,
we mapped ,15,000 SVs at nucleotide resolution, 48% of which were
novel. Few deletion loci (4.4%) displayed different SV breakpoints in
different samples, which is explainable by rare TIGRA misassemblies,
or alternatively, by recurrently formed, multi-allelic SVs (Supplemen-
tary Text). TIGRA further enabled us to validate an additional 7,359
SVs by identifying the SVs’ breakpoints (Methods), and to evaluate
the mapping precision of SV discovery methods (Fig. 2c, Supplemen-
tary Fig. 2).

We assessed the putative functional impact of SVs in our set further
by relating them to genomic annotation. Many SVs (1,775) affected
coding sequences, resulting in full gene overlaps or exon disruptions
(Table 2), many of which led to out-of-frame exons (Supplementary
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Figure 2 | Comparative assessment of deletion discovery methods.
a, Deletion size-range ascertained by different modes of SV discovery. Three
groups are visible, with AS and SR, PD and RP, as well as RD and ‘RL’ (RP
analysis involving relatively long range ($1 kb) insert size libraries, resulting in
a different deletion detection size range compared to the predominantly used
,500 bp insert size libraries), respectively, ascertaining similar size-ranges. Pie
charts display the contribution (%) of different SV discovery modes to the
release set. Outer pie is based on the number of SV calls; inner pie is based on the
total number of variable nucleotides. Of note, not all approaches were applied
across all individuals (see Supplementary Table 2). b, Sensitivity and FDR
estimates for individual deletion discovery methods based on gold standard sets
for individuals sequenced at high (NA12878) and low-coverage (NA12156),
respectively. All depicted estimates are summarized in Supplementary Tables 3,
4 and 6. Vertical dotted lines correspond to the specificity threshold
(FDR # 10%). c, Breakpoint mapping resolution of three deletion discovery
methods (the respective method names are in Supplementary Table 2). The blue
and red histograms are the breakpoint residuals for predicted deletion start and
end coordinates, respectively, relative to assembled coordinates (here assessed
in low-coverage data). The horizontal lines at the top of each plot mark the 98%
confidence intervals (labelled for each panel), with vertical notches indicating
the positions of the most probable breakpoint (the distribution mode).

Table 1 | Summary of discovered structural variation
Deletions Tandem duplications Mobile element insertions Novel sequence insertions Total

Individual call-sets , 10% FDR 11,215 501 5,371 2 17,087
Validated experimentally* 10,810 2 2 128 10,938
Release set 22,025 501 5,371 128 28,025

*Only tabulates validated calls which were not already present in individual call-sets with less than 10% FDR.
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Table 9). We related gene disruptions to gene functions, and observed
significant enrichments for several functional categories, including
cell defence and sensory perception (Supplementary Table 10).
High levels of structural variation, including copy number variation,
were described previously for both processes15,22,37. These SVs might
be maintained in the population by selection for the purpose of func-
tional redundancy. Whereas most SVs intersecting with genes were
deletions, several validated tandem duplications and MEIs also inter-
sected with coding sequences (Table 2).

Population genetic properties of deletions
We next sought to generate genotypes for deletions discovered in the
1000GP data, both to facilitate population genetics analyses and to
make our SV set amenable to association studies in the form of a
reference genotype set. In this regard, the Genome STRiP genotyping
method was developed (Handsaker, R. E., Korn, J. M., Nemesh, J. and
McCarroll, S. A., unpublished results), a method combining informa-
tion from RD, RP, SR and haplotype features of population-scale
sequence data for genotyping (Methods, Supplementary Text). Using
this approach we generated genotypes for 13,826 autosomal deletions
in 156 individuals. The genotypes displayed 99.1% concordance with
CGH array-based1 genotypes (available for 1,970 of the deletions),
indicating high genotyping accuracy.

Figure 3 presents allele frequency analyses based on these geno-
types. As expected, common polymorphisms (minor allele frequency
(MAF) . 5%) were typically shared across populations, whereas rare
alleles were frequently observed in only one population (Fig. 3a–c).
We observed several candidates for monomorphic deletions (that is,
genomic segments putatively deleted in all individuals), explainable
by rare insertions present in the reference genome or by remaining
genotyping inaccuracies (Supplementary Text).

Next we assessed the allele frequencies of gene deletions. Similar to a
recent array-based study1, we observed a depletion of high-frequency
alleles among deletions intersecting with protein-coding sequence com-
pared to other deletions (P 5 2.2 3 10216; KS test), consistent with puri-
fying selection keeping most gene deletions at low frequency (Fig. 3d).
Nonetheless, several coding sequence deletions were observed with high
allele frequency (.80%). Most of these occurred in regions annotated as
segmental duplications, consistent with lessened evolutionary constraint
in functionally redundant gene categories22. Intriguingly, common gene
deletions also affected many unique genes with no obvious paralogues.
We further analysed the abundance of gene deletions in different popu-
lations and observed highly differentiated loci, albeit with no statistically
significant relationship between differentiation and particular categories
of gene overlap, that is, intronic versus exonic (Supplementary Text).

By comparing deletion genotypes with genotypes of nearby SNPs,
we found, consistent with earlier studies1,13,38, that deletions in geno-
mic regions accessible to short read sequencing display extensive
linkage disequilibrium (LD) with SNPs. Most common deletions
(81%) had one or more SNPs with which they are strongly correlated
(r2 . 0.8; Supplementary Fig. 7). This indicates that many deletions
mapped in our study will be identifiable through tagging SNPs in
future studies (Supplementary Text). On the other hand, a fifth of
the genotyped deletions were not tagged by HapMap SNPs (a figure
similar to the fraction of SNPs that are not tagged by HapMap
SNPs39), implying that these SVs should be genotyped directly in
association studies. Furthermore, the LD properties of complex SVs
(for example, multiallelic SVs) have not yet been fully ascertained as
methods for genotyping such SVs with similar accuracy are still being
developed.

SV formation mechanism analysis
Nucleotide resolution breakpoint information enables inference of SV
formation mechanisms15,22. Recent studies broadly distinguished
between several germline rearrangement classes, some of which
may comprise more than one SV formation mechanism15,22,40,41: non-
allelic homologous recombination (NAHR), associated with long
sequence similarity stretches around the breakpoints; rearrangements
in the absence of extended sequence similarity (abbreviated as ‘non-
homologous’ or NH), associated with DNA repair by non-homologous
end-joining (NHEJ) or with microhomology-mediated break-induced
replication (MMBIR); the shrinking or expansion of variable number
of tandem repeats (VNTRs), frequently involving simple sequences, by
slippage; and MEIs. We distinguished among the classes NAHR, NH,
VNTR and MEI by examining the breakpoint junction sequences of
SVs that had initially been discovered as deletions or tandem duplica-
tions relative to a human reference.

We first compared these SVs to orthologous primate genomic
regions to distinguish deletions from insertions/duplications with
respect to reconstructed ancestral loci using the BreakSeq classifica-
tion approach41. This analysis showed that of the 11,254 nucleotide-
resolution SVs discovered as deletions relative to a human reference,
21% actually represented insertions and 2% represented tandem
duplications relative to the putative ancestral genome. Of the remain-
ing SVs, 60% were classified as deletions relative to ancestral sequence,
whereas the ancestral state of 17% was undetermined. By comparison,

Table 2 | Functional impact of our fine resolution SV set
SV class Gene overlap Total gene overlap Total intergenic

Full gene overlap Coding exon affected,
partial

UTR overlap Intron overlap

Deletions 654 (631) 1,093 (1,031) 315 (290) 7,319 (6,481) 9,381 (8,433) 12,644 (10,386)
Tandem duplications 2 (2) 7 (6) 9 (5) 197 (62) 215 (75) 286 (76)
Mobile element insertions 2 3 (2) 36 (26) 1,304 (97) 1,348 (112) 4,023 (758)
Novel sequence insertions 2 2 2 (2) 49 (49) 51 (51) 77 (77)
Sum 656 (633) 1,119 (1,040) 351 (309) 8,869 (6,689) 10,995 (8,671) 17,030 (11,280)

Figures in parentheses indicate numbers of validated SVs per category. We inferred gene overlap with Gencode gene annotation44.
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out of 160 nucleotide-resolution SVs identified as tandem duplica-
tions relative to the reference genome, 91.6% were classified as dupli-
cations relative to the ancestral genome, whereas the ancestral state of
8.4% remained undetermined (Supplementary Text). Our breakpoint
analysis revealed that 70.8% of the deletions and 89.6% of the inser-
tions exhibited breakpoint microhomology/homology ranging from
2–376 bp in size, with distribution modes of 2 bp (attributable to NH)
and 15 bp (attributable to MEI), respectively (Fig. 4a, Supplementary
Text). As expected40, a small portion of the deletions (16.1%) dis-
played non-template inserted sequences at their breakpoint junctions.
By comparison, the tandem duplications showed extensive stretches
displaying $95% sequence identity at the breakpoints linearly correl-
ating in length with SV size (Fig. 4a). In addition, most tandem dupli-
cations displayed 2–17 bp of microhomology at the breakpoint
junctions (Supplementary Text).

We subsequently applied BreakSeq41 to infer formation mechan-
isms for all SVs classified with regard to ancestral state. Using
BreakSeq, we inferred NH as the dominating deletion mechanism,
and MEI as the dominating insertion mechanism (Fig. 4b, c and Sup-
plementary Table 11). Furthermore, an abundance of microhomology
at tandem duplication breakpoints suggested frequent formation of
this SV class by a rearrangement process acting in the absence of
homology (NH). When relating SV formation to the variant size
spectrum, we observed marked insertion peaks for MEIs at 300 bp,
corresponding to Alu elements, and at 6 kb, corresponding to the L1
class of long interspersed elements (LINEs) (Fig. 4c). By comparison,
NH- and NAHR-based mechanisms occurred across a wide size-
range, whereas VNTR expansion/shrinkage, consistent with earlier
findings1, led to relatively small SV sizes (Fig. 4c, d).

Furthermore, when displaying the genomic distribution of SVs
(Fig. 5a), we observed a notable clustering of SVs into ‘SV hotspots’.
We analysed this clustering in detail by examining the distribution of
non-overlapping, adjacent SVs, and observed a marked clustering of

SVs formed by NAHR, VNTR and NH, respectively, a signal extend-
ing to hundreds of kilobases (Fig. 5b). The clustering was influenced
by an abundance of VNTR near the centromeres41 and NAHR near
the telomeres (Fig. 5a). A significant enrichment of NAHR near
recombination hotspots (P 5 1.3 3 10215) and segmental duplica-
tions (P 5 3.1 3 10217) further contributed to the clustering (Sup-
plementary Table 13).

To further explore this clustering we devised a segmentation
approach for predicting SV hotspots (Methods), which yielded a map
of 51 putative SV hotspots (Supplementary Table 14). Most of the hot-
spots (80%) mainly comprised SVs originating from a single formation
mechanism (Fig. 5c). Most of these corresponded to NAHR hotspots,
although hotspots dominated by NH and VNTR were also evident.
These observations indicate that SV formation is frequently associated
with the locus-specific propensity for genomic rearrangement.

Conclusions and discussion
By generating an SV set of unprecedented size along with breakpoint
assemblies and reference genotypes, we demonstrate the suitability of
population-scale sequencing for SV analysis. Nucleotide resolution
data allow the construction of reference data sets and make SVs readily
assessable across different experimental platforms using genotyping
approaches. Our fine-scale map enabled us to examine the functional
impact of SVs, as exemplified by the set of gene disruption variants we
reported, which will be of value for genome and exome sequencing
studies.

Our map further enabled us to examine size spectra of SV forma-
tion mechanisms and led us to identify genomic SV hotspots that are
commonly dominated by a single formation mechanism. Recurrent
rearrangements, implicated in genomic disorders, are hypothesized to
be associated with local genome architecture42, for example, with
segmental duplications that facilitate NAHR. Also, DNA rearrange-
ment in the absence of homology, that is, MMBIR, has been implicated
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in recurrent SV formation8,43. In this regard, we noticed that out of the
hotspots we report, six fall into critical regions of known genetic dis-
orders associated with recurrent de novo deletions, including Miller–
Dieker syndrome and Leri–Weill dyschondrosteosis (Supplementary
Table 14). Irrespective of potential disease relevance, or inferred mech-
anism of formation, our analysis revealed a map of SV hotspots that
may constitute local centres of de novo SV formation, consistent with
the concept that local genome architecture contributes to genomic
instability42.

Our study focused on characterizing deletions, which are often
associated with disease9. Facilitated by ancestral analyses of SV loci,
we also characterized insertions and tandem duplications, albeit in
less detail than deletions. Companion papers with more detailed ana-
lyses of MEIs and copy number variation within segmental duplica-
tions are published elsewhere (Stewart, C. et al., unpublished results,
and ref. 34). Of note, most SV discovery methods depend on mapping
reads onto their genomic locus of origin, that is, the ‘accessible’ frac-
tion of the genome, a fraction lessened in segmental duplications that
are of high interest to SV analysis. Nonetheless, owing to the abilities
of SV discovery methods in detecting SVs in these regions and in
interpreting reads with multiple mapping positions, the ‘accessible’
fraction of the genome is higher for SVs than for SNPs16. In the future,
sequencing technologies generating longer DNA reads will increase the
accessible genome, and will enable the assessment of SVs embedded in
long repeat structures, such as balanced inversions.

Our SV resource will enable the discovery, genotyping and imputa-
tion of SVs in larger cohorts. Numerous genomes will be sequenced in
the coming months to facilitate disease association studies. Systematic
characterization of SVs in these genomes will benefit from the con-
cepts and data sets presented here.

METHODS SUMMARY
Samples. Whole genome sequencing data for 179 unrelated individuals and six
individuals from parent-offspring trios were obtained as part of the 1000GP.
These data were generated with Illumina/Solexa, Roche/454 and Life
Technologies/SOLiD sequencing technology platforms.
SV discovery and breakpoint assembly. The SV discovery methods we applied
comprised six RP, four RD, three SR, four AS, and two PD based methods. TIGRA
(Chen, L. et al., unpublished results) was used for targeted breakpoint assembly.

Experimental validation. We validated SV calls by PCR, array CGH and SNP
microarrays, targeted assembly, and custom microarray-based sequence capture.
PCR was performed in various different laboratories33, CGH analysis was per-
formed based on tiling array data provided by the Genome Structural Variation
Consortium (ArrayExpress: E-MTAB-40), and SNP array analysis based on data
obtained from the International HapMap Consortium (http://hapmap.ncbi.nlm.
nih.gov).
Genotyping. Genome STRiP (Handsaker, R. E., Korn, J. M., Nemesh, J. and
McCarroll, S. A., unpublished results) was used for deletion genotyping in low-
coverage sequence data. Initial genotype likelihoods were derived with a Bayesian
model and imputation into a SNP genotype reference panel from the HapMap39

(Hapmap3r2) was achieved with Beagle (v3.1; http://faculty.washington.edu/
browning/beagle/beagle.html).
SV formation mechanism analysis. SV breakpoints mapped at nucleotide reso-
lution were analysed with BreakSeq41 to classify SVs relative to putative ancestral
loci and to infer SV formation mechanisms. SV hotspots were mapped with
custom Perl and R scripts.

Received 19 August; accepted 26 November 2010.

1. Conrad, D. F. et al. Origins and functional impact of copy number variation in the
human genome. Nature 464, 704–712 (2010).

2. Pinto, D. et al. Functional impact of global rare copy number variation in autism
spectrum disorders. Nature 466, 368–372 (2010).

3. Sebat, J. et al. Strong association of de novo copy number mutations with autism.
Science 316, 445–449 (2007).

4. Stefansson,H.et al. Large recurrentmicrodeletionsassociated with schizophrenia.
Nature 455, 232–236 (2008).

5. McCarthy, S. E. et al. Microduplications of 16p11.2 are associated with
schizophrenia. Nature Genet. 41, 1223–1227 (2009).

6. Craddock, N. et al. Genome-wide association study of CNVs in 16,000 cases of
eight common diseases and 3,000 shared controls. Nature 464, 713–720 (2010).

7. McCarroll, S. A. et al. Deletion polymorphism upstream of IRGM associated with
altered IRGM expression and Crohn’s disease. Nature Genet. 40, 1107–1112
(2008).

8. Hastings, P. J., Lupski, J. R., Rosenberg, S. M. & Ira, G. Mechanisms of change in
gene copy number. Nature Rev. Genet. 10, 551–564 (2009).

9. Stankiewicz, P. & Lupski, J. R. Structural variation in the human genome and its
role in disease. Annu. Rev. Med. 61, 437–455 (2010).

10. Sebat, J. et al. Large-scale copy number polymorphism in the human genome.
Science 305, 525–528 (2004).

11. Iafrate, A. J. et al. Detection of large-scale variation in the human genome. Nature
Genet. 36, 949–951 (2004).

12. Sharp, A. J. et al. Segmental duplications and copy-number variation in the human
genome. Am. J. Hum. Genet. 77, 78–88 (2005).

13. McCarroll, S. A. et al. Integrated detection and population-genetic analysis of SNPs
and copy number variation. Nature Genet. 40, 1166–1174 (2008).

14. Tuzun, E. et al. Fine-scale structural variation of the human genome. Nature Genet.
37, 727–732 (2005).

15. Korbel, J. O. et al. Paired-end mapping reveals extensive structural variation in the
human genome. Science 318, 420–426 (2007).

16. Alkan, C. et al. Personalized copy number and segmental duplication maps using
next-generation sequencing. Nature Genet. 41, 1061–1067 (2009).

17. Chen, K. et al. BreakDancer: an algorithm for high-resolution mapping of genomic
structural variation. Nature Methods 6, 677–681 (2009).

18. Hormozdiari, F., Alkan, C., Eichler, E. E. & Sahinalp, S. C. Combinatorial algorithms
for structural variation detection in high-throughput sequenced genomes.
Genome Res. 19, 1270–1278 (2009).

19. Medvedev, P., Stanciu, M. & Brudno, M. Computational methods for discovering
structural variation with next-generation sequencing. Nature Methods 6, S13–S20
(2009).

20. McKernan, K. J. et al. Sequence and structural variation in a human genome
uncovered by short-read, massively parallel ligation sequencing using two-base
encoding. Genome Res. 19, 1527–1541 (2009).

21. Chiang, D. Y. et al. High-resolution mapping of copy-number alterations with
massively parallel sequencing. Nature Methods 6, 99–103 (2009).

22. Kidd, J. M. et al. Mapping and sequencing of structural variation from eight human
genomes. Nature 453, 56–64 (2008).

23. Lee, S., Cheran, E. & Brudno, M. A robust framework for detecting structural
variations in a genome. Bioinformatics 24, i59–i67 (2008).

24. Pang, A. W. et al. Towards a comprehensive structural variation map of an
individual human genome. Genome Biol. 11, R52 (2010).

25. Bailey, J. A. et al. Recent segmental duplications in the human genome. Science
297, 1003–1007 (2002).

26. Campbell, P. J. et al. Identification of somatically acquired rearrangements in
cancer using genome-wide massively parallel paired-end sequencing. Nature
Genet. 40, 722–729 (2008).

27. Yoon, S., Xuan, Z., Makarov, V., Ye, K. & Sebat, J. Sensitive and accurate detection of
copy number variants using read depth of coverage. Genome Res. 19, 1586–1592
(2009).

28. Mills, R. E. et al. An initial map of insertion and deletion (INDEL) variation in the
human genome. Genome Res. 16, 1182–1190 (2006).

2
0

0
 b

p

5
0

0
 b

p

1
 k

b

2
 k

b

5
 k

b

1
0

 k
b

2
0

 k
b

5
0

 k
b

1
0

0
 k

b

2
0

0
 k

b

5
0

0
 k

b

1
 M

b

NAHR
NH
MEI
VNTR
Control (NH vs. NAHR) 

E
n

ri
c
h

m
e
n

t
(c

lu
s
te

ri
n

g
 o

f 
S

V
 

fo
rm

a
ti
o

n
 p

ro
c
e
s
s
) 

D
e
p

le
ti
o

n
(n

o
 c

lu
s
te

ri
n

g
) 

chr10

N
u

m
b

e
rs

 o
f 

g
e
n

o
m

ic
 S

V
 h

o
ts

p
o

ts

(c
o

lo
u

r:
 d

o
m

in
a
te

d
 b

y
 s

in
g

le
 m

e
c
h

a
n

is
m

) 

0

5

10

15

20

25

NAHR NH VNTR MEI Mixed

a

b c

Figure 5 | Mapping hotspots of SV formation in the genome. a, Distribution
of SVs on chromosome 10 (‘chr10’). Above the ideogram, coloured bars
indicate SV formation mechanisms (same colour scheme as in (b) and (c)); bar
lengths relate to the logarithm of SV size. Below the ideogram, bar lengths are
directly proportional to allele frequencies. Arrows indicate an SV hotspot near
the centromere underlying mainly VNTR and several hotspots near the
telomeres underlying mainly NAHR events. b, Enrichment of SVs inferred to
be formed by the same formation mechanism for different genomic window
sizes. Displayed is an enrichment of nearby, non-overlapping SVs formed by
the same mechanism relative to an SV set where mechanism assignments are
shuffled randomly. c, SV hotspots are mostly dominated by a single formation
mechanism. Coloured bars depict numbers of SV hotspots in which at least 50%
of the variants were inferred to be formed by a single formation mechanism.
The average abundance of NAHR-classified SVs in NAHR hotspots was 70%
(compared with 77% for VNTR-hotspots; 69% for NH). The grey bar (‘mixed’)
corresponds to SV hotspots with no single mechanism dominating.

RESEARCH ARTICLE

6 4 | N A T U R E | V O L 4 7 0 | 3 F E B R U A R Y 2 0 1 1

Macmillan Publishers Limited. All rights reserved©2011

http://hapmap.ncbi.nlm.nih.gov
http://hapmap.ncbi.nlm.nih.gov
http://faculty.washington.edu/browning/beagle/beagle.html
http://faculty.washington.edu/browning/beagle/beagle.html


29. Ye, K., Schulz, M. H., Long, Q., Apweiler, R. & Ning, Z. Pindel: a pattern growth
approach to detect break points of large deletions and medium sized insertions
from paired-end short reads. Bioinformatics 25, 2865–2871 (2009).

30. Simpson, J. T. et al. ABySS: a parallel assembler for short read sequence data.
Genome Res. 19, 1117–1123 (2009).

31. Hajirasouliha, I. et al. Detection and characterization of novel sequence insertions
using paired-end next-generation sequencing. Bioinformatics 26, 1277–1283
(2010).

32. Li, R. et al. The sequence and de novo assembly of the giant panda genome. Nature
463, 311–317 (2010).

33. The 1000 Genomes Project Consortium. A map of human genome variation from
population-scale sequencing. Nature 467, 1061–1073 (2010).

34. Sudmant, P. H. et al. Diversity of human copy number variation and multicopy
genes. Science 330, 641–646 (2010).

35. Willer, C. J. et al. Six new loci associated with body mass index highlight a neuronal
influence on body weight regulation. Nature Genet. 41, 25–34 (2008).

36. Levy, S. et al. The diploid genome sequence of an individual human. PLoS Biol. 5,
e254 (2007).

37. Hasin-Brumshtein, Y., Lancet, D. & Olender, T. Human olfaction: from genomic
variation to phenotypic diversity. Trends Genet. 25, 178–184 (2009).

38. Hinds, D. A., Kloek, A. P., Jen, M., Chen, X. & Frazer, K. A. Common deletions and
SNPs are in linkage disequilibrium in the human genome. Nature Genet. 38,
82–85 (2006).

39. Altshuler, D. M. et al. Integrating common and rare genetic variation in diverse
human populations. Nature 467, 52–58 (2010).

40. Conrad, D. F. et al. Mutation spectrum revealed by breakpoint sequencing of
human germline CNVs. Nature Genet. 42, 385–391 (2010).

41. Lam, H. Y. et al. Nucleotide-resolution analysis of structural variants using
BreakSeq and a breakpoint library. Nature Biotechnol. 28, 47–55 (2010).

42. Lupski, J. R. Genomicdisorders: structural featuresof the genome can lead to DNA
rearrangements and human disease traits. Trends Genet. 14, 417–422 (1998).

43. Lee, J. A., Carvalho, C. M. & Lupski, J. R. A. DNA replication mechanism for
generating nonrecurrent rearrangements associated with genomic disorders. Cell
131, 1235–1247 (2007).

44. Harrow,J.et al.GENCODE:producinga referenceannotation for ENCODE.Genome
Biol. 7 (suppl. 1), S4 (2006).

Supplementary Information is linked to the online version of the paper at
www.nature.com/nature.

Acknowledgements We would like to acknowledge C. Hardy, R. Smith, A. De Witte and
S. Giles for their assistance with validation. M.A.B.’s group was supported by a grant
from the National Institutes of Health (RO1 GM59290) and G.T.M.’s group by grants
R01 HG004719 and RC2 HG005552, also from the NIH. J.O.K.’s group was supported
by an Emmy Noether Fellowship of the German Research Foundation (Deutsche
Forschungsgemeinschaft). J.W.’s group was supported by the National Basic Research

Program of China (973 program no. 2011CB809200), the National Natural Science
Foundation of China (30725008; 30890032; 30811130531; 30221004), the
Chinese 863 program (2006AA02Z177; 2006AA02Z334; 2006AA02A302;
2009AA022707), the Shenzhen Municipal Government of China (grants
JC200903190767A; JC200903190772A; ZYC200903240076A;
CXB200903110066A; ZYC200903240077A; ZYC200903240076A and
ZYC200903240080A) and the Ole Rømer grant from the Danish Natural Science
Research Council. E.E.E.’s group was supported by grants P01 HG004120 and U01
HG005209 from the National Institutes ofHealth. C.L.’s group was supported bygrants
from the National Institutes of Health: P41 HG004221, RO1 GM081533 and UO1
HG005209 and X.S. was supported by a T32 fellowship award from the NIH. We thank
the Genome Structural Variation Consortium (http://www.sanger.ac.uk/humgen/cnv/
42mio/) and the International HapMap Consortium for making available microarray
data. The authors acknowledge the individuals participating in the 1000 Genomes
Project by providing samples, including the Yoruba people of Ibadan, Nigeria, the
community at Beijing Normal University, the people of Tokyo, Japan, and the people of
the Utah CEPH community. Furthermore, we thank R. Durbin and L. Steinmetz for
comments on the manuscript.

Author Contributions The authors contributed this study at different levels, as
described in the following. SV discovery: K.W., C.S., R.E.H., K.C., C.A., A.A., S.C.Y., R.K.C.,
A.C., Y.F., I.H., F.H., Z.I., D.K., R.Li., Y.L., C.L., R.Lu., X.J.M., H.E.P., L.D.,G.T.M., J.S., Ju.W., Ka.Y.,
Ke.Y., E.E.E., M.B.G., M.E.H., S.A.M. and J.O.K. SV validation: R.E.M., K.W., K.C., A.A., S.C.Y.,
F.G., M.K.K., J.K., J.N., A.E.U., X.S., A.M.S., J.A.W., Y.Z., Z.D.Z., M.A.B., J.S., M.S., M.E.H., C.L.
and J.O.K. SV genotyping: K.W., R.E.H., J.K., J.N., M.E.H. and S.A.M. Data analysis: R.E.M.,
C.S., C.A., A.A., R.E.H., K.C., S.C.Y.,R.K.C., A.C., D.F.C., Y.F., F.H., L.M.I., Z.I., J.M.K., M.K.K., S.K.,
J.K., E.K., D.K., H.Y.K.L., J.L., R.Li, Y.L., C.L., R.Luo, X.J.M., J.N., H.E.P., T.R., A.S., X.S., M.P.S.,
J.A.W., Ji.W., Y.Z., Z.D.Z., M.A.B., L.D., G.T.M., G.M., J.S., M.S., Ju.W., Ka.Y., Ke.Y., E.E.E.,
M.B.G., M.E.H., C.L, S.A.M. and J.O.K. Preparation of manuscript display items: R.E.M.,
K.W., C.S., C.A., A.A., R.E.H., S.C.Y., L.M.I., S.K., E.K., M.K.K., X.J.M., X.S., J.A.W., M.B.G., S.A.M.
and J.O.K. Co-chairs of the Structural Variation Analysis group: E.E.E., M.E.H. and C.L.
The following equally contributed to directing the described analyses and participating
in the design of the study and should be considered joint senior authors: E.E.E., M.B.G.,
M.E.H., C.L., S.A.M. and J.O.K. The manuscript was written by the following authors:
R.E.M. and J.O.K.

Author Information Data setsdescribedherecanbeobtained fromthe1000Genomes
Project website at www.1000genomes.org (July 2010 Data Release). Individual SV
discovery methods can be obtained from sources mentioned in Supplementary Table
2, or upon request from the authors. Reprints and permissions information is available
at www.nature.com/reprints. Theauthors declare competing financial interests: details
accompany the full-text HTML version of the paper at www.nature.com/nature.
Readers are welcome to comment on the online version of this article at
www.nature.com/nature. Correspondence and requests for materials should be
addressed to J.O.K. (jan.korbel@embl.de).

ARTICLE RESEARCH

3 F E B R U A R Y 2 0 1 1 | V O L 4 7 0 | N A T U R E | 6 5

Macmillan Publishers Limited. All rights reserved©2011

www.nature.com/nature
http://www.sanger.ac.uk/humgen/cnv/42mio
http://www.sanger.ac.uk/humgen/cnv/42mio
www.1000genomes.org
www.nature.com/reprints
www.nature.com/nature
www.nature.com/nature
mailto:jan.korbel@embl.de

	Title
	Authors
	Abstract
	Introduction
	Assessment of SV discovery methods
	Construction of our SV discovery set
	Extent and impact of our SV discovery set
	Population genetic properties of deletions
	SV formation mechanism analysis
	Conclusions and discussion
	Methods Summary
	Samples
	SV discovery and breakpoint assembly
	Experimental validation
	Genotyping
	SV formation mechanism analysis

	References
	Figure 1 SV discovery and genotyping in population scale sequence data.
	Figure 2 Comparative assessment of deletion discovery methods.
	Figure 3 Analysis of deletion presence and absence in three populations.
	Figure 4 Contribution of SV formation mechanisms to the SV size spectrum.
	Figure 5 Mapping hotspots of SV formation in the genome.
	Table 1 Summary of discovered structural variation
	Table 2 Functional impact of our fine resolution SV set

