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A map of human genome variation from
population-scale sequencing
The 1000 Genomes Project Consortium*

The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation
for investigating the relationship between genotype and phenotype. Here we present results of the pilot phase of the
project, designed to develop and compare different strategies for genome-wide sequencing with high-throughput
platforms. We undertook three projects: low-coverage whole-genome sequencing of 179 individuals from four
populations; high-coverage sequencing of two mother–father–child trios; and exon-targeted sequencing of 697
individuals from seven populations. We describe the location, allele frequency and local haplotype structure of
approximately 15 million single nucleotide polymorphisms, 1 million short insertions and deletions, and 20,000
structural variants, most of which were previously undescribed. We show that, because we have catalogued the vast
majority of common variation, over 95% of the currently accessible variants found in any individual are present in this
data set. On average, each person is found to carry approximately 250 to 300 loss-of-function variants in annotated
genes and 50 to 100 variants previously implicated in inherited disorders. We demonstrate how these results can be used
to inform association and functional studies. From the two trios, we directly estimate the rate of de novo germline base
substitution mutations to be approximately 1028 per base pair per generation. We explore the data with regard to
signatures of natural selection, and identify a marked reduction of genetic variation in the neighbourhood of genes,
due to selection at linked sites. These methods and public data will support the next phase of human genetic research.

Understanding the relationship between genotype and phenotype is
one of the central goals in biology and medicine. The reference human
genome sequence1 provides a foundation for the study of human
genetics, but systematic investigation of human variation requires full
knowledge of DNA sequence variation across the entire spectrum of
allele frequencies and types of DNA differences. Substantial progress
has already been made. By 2008 the public catalogue of variant sites
(dbSNP 129) contained approximately 11 million single nucleotide
polymorphisms (SNPs) and 3 million short insertions and deletions
(indels)2–4. Databases of structural variants (for example, dbVAR)
indexed the locations of large genomic variants. The International
HapMap Project catalogued both allele frequencies and the correlation
patterns between nearby variants, a phenomenon known as linkage
disequilibrium (LD), across several populations for 3.5 million SNPs3,4.

These resources have driven disease gene discovery in the first
generation of genome-wide association studies (GWAS), wherein
genotypes at several hundred thousand variant sites, combined with
the knowledge of LD structure, allow the vast majority of common
variants (here, those with .5% minor allele frequency (MAF)) to be
tested for association4 with disease. Over the past 5 years association
studies have identified more than a thousand genomic regions asso-
ciated with disease susceptibility and other common traits5. Genome-
wide collections of both common and rare structural variants have
similarly been tested for association with disease6.

Despite these successes, much work is still needed to achieve a deep
understanding of the genetic contribution to human phenotypes7.
Once a region has been identified as harbouring a risk locus, detailed
study of all genetic variants in the locus is required to discover the causal
variant(s), to quantify their contribution to disease susceptibility, and to
elucidate their roles in functional pathways. Low-frequency and rare
variants (here defined as 0.5% to 5% MAF, and below 0.5% MAF,
respectively) vastly outnumber common variants and also contribute

significantly to the genetic architecture of disease, but it has not yet been
possible to study them systematically7–9. Meanwhile, advances in DNA
sequencing technology have enabled the sequencing of individual
genomes10–13, illuminating the gaps in the first generation of databases
that contain mostly common variant sites. A much more complete
catalogue of human DNA variation is a prerequisite to understand fully
the role of common and low-frequency variants in human phenotypic
variation.

The aim of the 1000 Genomes Project is to discover, genotype and
provide accurate haplotype information on all forms of human DNA
polymorphism in multiple human populations. Specifically, the goal
is to characterize over 95% of variants that are in genomic regions
accessible to current high-throughput sequencing technologies and
that have allele frequency of 1% or higher (the classical definition of
polymorphism) in each of five major population groups (populations
in or with ancestry from Europe, East Asia, South Asia, West Africa
and the Americas). Because functional alleles are often found in coding
regions and have reduced allele frequencies, lower frequency alleles
(down towards 0.1%) will also be catalogued in such regions.

Here we report the results of the pilot phase of the project, the aim of
which was to develop and compare different strategies for genome-wide
sequencing with high-throughput platforms. To this end we undertook
three projects: low-coverage sequencing of 179 individuals; deep
sequencing of six individuals in two trios; and exon sequencing of
8,140 exons in 697 individuals (Box 1). The results give us a much
deeper, more uniform picture of human genetic variation than was
previously available, providing new insights into the landscapes of func-
tional variation, genetic association and natural selection in humans.

Data generation, alignment and variant discovery
A total of 4.9 terabases of DNA sequence was generated in nine
sequencing centres using three sequencing technologies, from DNA
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obtained from immortalized lymphoblastoid cell lines (Table 1 and
Supplementary Table 1). All sequenced individuals provided informed
consent and explicitly agreed to public dissemination of their variation

data, as part of the HapMap Project (see Supplementary Information
for details of informed consent and data release). The heterogeneity of
the sequence data (read lengths from 25 to several hundred base pairs
(bp); single and paired end) reflects the diversity and rapid evolution of
the underlying technologies during the project. All primary sequence
data were confirmed to have come from the correct individual by
comparison to HapMap SNP genotype data.

Analysis to detect and genotype sequence variants differed among
variant types and the three projects, but all workflows shared the
following four features. (1) Discovery: alignment of sequence reads
to the reference genome and identification of candidate sites or
regions at which one or more samples differ from the reference
sequence; (2) filtering: use of quality control measures to remove
candidate sites that were probably false positives; (3) genotyping:
estimation of the alleles present in each individual at variant sites or
regions; (4) validation: assaying a subset of newly discovered variants
using an independent technology, enabling the estimation of the false
discovery rate (FDR). Independent data sources were used to estimate
the accuracy of inferred genotypes.

All primary sequence reads, mapped reads, variant calls, inferred
genotypes, estimated haplotypes and new independent validation
data are publicly available through the project website (http://www.
1000genomes.org); filtered sets of variants, allele frequencies and geno-
types were also deposited in dbSNP (http://www.ncbi.nlm.nih.gov/snp).

Alignment and the ‘accessible genome’
Sequencing reads were aligned to the NCBI36 reference genome
(details in Supplementary Information) and made available in the
BAM file format14, an early innovation of the project for storing
and sharing high-throughput sequencing data. Accurate identifica-
tion of genetic variation depends on alignment of the sequence data to
the correct genomic location. We restricted most variant calling to the
‘accessible genome’, defined as that portion of the reference sequence
that remains after excluding regions with many ambiguously placed
reads or unexpectedly high or low numbers of aligned reads (Sup-
plementary Information). This approach balances the need to reduce
incorrect alignments and false-positive detection of variants against
maximizing the proportion of the genome that can be interrogated.

For the low-coverage analysis, the accessible genome contains
approximately 85% of the reference sequence and 93% of the coding
sequences. Over 99% of sites genotyped in the second generation
haplotype map (HapMap II)4 are included. Of inaccessible sites, over
97% are annotated as high-copy repeats or segmental duplications.
However, only one-quarter of previously discovered repeats and seg-
mental duplications were inaccessible (Supplementary Table 2). Much
of the data for the trio project were collected before technical improve-
ments in our ability to map sequence reads robustly to some of the
repeated regions of the genome (primarily longer, paired reads). For
these reasons, stringent alignment was more difficult and a smaller
portion of the genome was accessible in the trio project: 80% of the
reference, 85% of coding sequence and 97% of HapMap II sites (Table 1).

Calibration, local realignment and assembly
The quality of variant calls is influenced by many factors including the
quantification of base-calling error rates in sequence reads, the accu-
racy of local read alignment and the method by which individual
genotypes are defined. The project introduced key innovations in each
of these areas (see Supplementary Information). First, base quality
scores reported by the image processing software were empirically
recalibrated by tallying the proportion that mismatched the reference
sequence (at non-dbSNP sites) as a function of the reported quality
score, position in read and other characteristics. Second, at potential
variant sites, local realignment of all reads was performed jointly across
all samples, allowing for alternative alleles that contained indels. This
realignment step substantially reduced errors, because local misalign-
ment, particularly around indels, can be a major source of error in

BOX 1

The 1000 Genomes pilot projects
To develop and assess multiple strategies to detect and genotype
variants of various types and frequencies using high-throughput
sequencing, we carried out three projects, using samples from the
extended HapMap collection17.

Trio project: whole-genome shotgun sequencing at high coverage
(average 423) of two families (one Yoruba from Ibadan, Nigeria (YRI);
one of European ancestry in Utah (CEU)), each including two parents
and one daughter. Each of the offspring was sequenced using three
platforms and by multiple centres.

Low-coverage project: whole-genome shotgun sequencing at low
coverage (2–63) of 59 unrelated individuals from YRI, 60 unrelated
individuals from CEU, 30 unrelated Han Chinese individuals in Beijing
(CHB) and 30 unrelated Japanese individuals in Tokyo (JPT).

Exon project: targeted capture of 8,140 exons from 906 randomly
selected genes (total of 1.4Mb) followed by sequencing at high
coverage (average .503) in 697 individuals from 7 populations of
African (YRI, Luhya in Webuye, Kenya (LWK)), European (CEU, Toscani
in Italia (TSI)) and East Asian (CHB, JPT, Chinese in Denver, Colorado
(CHD)) ancestry.

The three experimental designs differ substantially both in their
ability toobtaindata for variants ofdifferent types and frequencies and
in the analytical methods we used to infer individual genotypes. Box 1
Figure shows a schematic representation of the projects and the type
of information obtained from each. Colours in the left region indicate
different haplotypes in individual genomes, and line width indicates
depthof coverage (not to scale). Theshadedregion to therightgivesan
example of genotype data that could be generated for the same
sample under the three strategies (dots indicate missing data; dashes
indicate phase information, that is, whether heterozygous variants can
be assigned to the correct haplotype). Within a short region of the
genome, each individual carries two haplotypes, typically shared by
others in the population. In the trio design, high-sequence coverage
and the use of multiple platforms enable accurate discovery of
multiple variant types across most of the genome, with Mendelian
transmission aiding genotype estimation, inference of haplotypes and
quality control. The low-coverage project, in contrast, efficiently
identifies sharedvariantsoncommonhaplotypes49,50 (redorblue), but
has lower power to detect rare haplotypes (light green) and associated
variants (indicated by the missing alleles), and will give some
inaccurate genotypes (indicated by the red allele incorrectly assigned
G). The exon design enables accurate discovery of common, rare and
low-frequency variation in the targeted portion of the genome, but
lacks the ability to observe variants outside the targeted regions or
assign haplotype phase.
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variant calling. Finally, by initially analysing the data with multiple
genotype and variant calling algorithms and then generating a con-
sensus of these results, the project reduced genotyping error rates by
30–50% compared to those currently achievable using any one of the
methods alone (Supplementary Fig. 1 and Supplementary Table 12).

We also used local realignment to generate candidate alternative
haplotypes in the process of calling short (1–50-bp) indels15, as well as
local de novo assembly to resolve breakpoints for deletions greater
than 50 bp. The latter resulted in a doubling of the number of large
(.1 kb) structural variants delineated with base-pair resolution16. Full
genome de novo assembly was also performed (Supplementary
Information), resulting in the identification of 3.7 megabases (Mb)
of novel sequence not matching the reference at a high threshold for
assembly quality and novelty. All novel sequence matched other
human and great ape sequences in the public databases.

Rates of variant discovery
In the trio project, with an average mapped sequence coverage of 423

per individual across six individuals and 2.3 gigabases (Gb) of accessible
genome, we identified 5.9 million SNPs, 650,000 short indels (of
1–50 bp in length), and over 14,000 larger structural variants. In the
low-coverage project, with average mapped coverage of 3.63 per indi-
vidual across 179 individuals (Supplementary Fig. 2) and 2.4 Gb of
accessible genome, we identified 14.4 million SNPs, 1.3 million short
indels and over 20,000 larger structural variants. In the exon project,
with an average mapped sequence coverage of 563 per individual
across 697 individuals and a target of 1.4 Mb, we identified 12,758
SNPs and 96 indels.

Experimental validation was used to estimate and control the FDR
for novel variants (Supplementary Table 3). The FDR for each complete
call set was controlled to be less than 5% for SNPs and short indels,
and less than 10% for structural variants. Because in an initial test

almost all of the sites that we called that were already in dbSNP were
validated (285 out of 286), in most subsequent validation experiments
we tested only novel variants and extrapolated to obtain the overall
FDR. This process will underestimate the true FDR if more SNPs listed
in dbSNP are false positives for some call sets. The FDR for novel
variants was 2.6% for trio SNPs, 10.9% for low-coverage SNPs, and
1.7% for low-coverage indels (Supplementary Information and Sup-
plementary Tables 3 and 4a, b).

Variation detected by the project is not evenly distributed across
the genome: certain regions, such as the human leukocyte antigen
(HLA) and subtelomeric regions, show high rates of variation,
whereas others, for example a 5-Mb gene-dense and highly conserved
region around 3p21, show very low levels of variation (Supplementary
Fig. 3a). At the chromosomal scale we see strong correlation between
different forms of variation, particularly between SNPs and indels
(Supplementary Fig. 3b). However, we also find heterogeneity par-
ticular to types of structural variant, for example structural variants
resulting from non-allelic homologous recombination are apparently
enriched in the HLA and subtelomeric regions (Supplementary Fig.
3b, top).

Variant novelty
As expected, the vast majority of sites variant in any given individual
were already present in dbSNP; the proportion newly discovered dif-
fered substantially among populations, variant types and allele fre-
quencies (Fig. 1). Novel SNPs had a strong tendency to be found
only in one analysis panel (set of related populations; Fig. 1a). For
SNPs also present in dbSNP version 129 (the last release before 1000
Genomes Project data), only 25% were specific to a single low-coverage
analysis panel and 56% were found in all panels. On the other hand,
84% of newly discovered SNPs were specific to a single analysis panel
whereas only 4% were found in all analysis panels. In the exon project,

Table 1 | Variants discovered by project, type, population and novelty
a Summary of project data including combined exon populations

Statistic

Low coverage Trios
Exon
(total)

Unionacross
projectsCEU YRI CHB1JPT Total CEU YRI Total

Samples 60 59 60 179 3 3 6 697 742
Total raw bases (Gb) 1,402 874 596 2,872 560 615 1,175 845 4,892
Total mapped bases (Gb) 817 596 468 1,881 369 342 711 56 2,648
Mean mapped depth (3) 4.62 3.42 2.65 3.56 43.14 40.05 41.60 55.92 NA
Bases accessed (% of genome) 2.43 Gb

(86%)
2.39 Gb

(85%)
2.41 Gb

(85%)
2.42 Gb
(86.0%)

2.26 Gb
(79%)

2.21 Gb
(78%)

2.24 Gb
(79%)

1.4 Mb NA

No. of SNPs (% novel) 7,943,827
(33%)

10,938,130
(47%)

6,273,441
(28%)

14,894,361
(54%)

3,646,764
(11%)

4,502,439
(23%)

5,907,699
(24%)

12,758
(70%)

15,275,256
(55%)

Mean variant SNP sites per individual 2,918,623 3,335,795 2,810,573 3,019,909 2,741,276 3,261,036 3,001,156 763 NA
No. of indels (% novel) 728,075

(39%)
941,567

(52%)
666,639

(39%)
1,330,158

(57%)
411,611

(25%)
502,462

(37%)
682,148

(38%)
96

(74%)
1,480,877

(57%)
Mean variant indel sites per individual 354,767 383,200 347,400 361,669 322,078 382,869 352,474 3 NA
No. of deletions (% novel) ND ND ND 15,893

(60%)
6,593
(41%)

8,129
(50%)

11,248
(51%)

ND 22,025
(61%)

No. of genotyped deletions (% novel) ND ND ND 10,742
(57%)

ND ND 6,317
(48%)

ND 13,826
(58%)

No. of duplications (% novel) 259
(90%)

320
(90%)

280
(91%)

407
(89%)

187
(93%)

192
(91%)

256
(92%)

ND 501
(89%)

No. of mobile element insertions (% novel) 3,202
(79%)

3,105
(84%)

1,952
(76%)

4,775
(86%)

1,397
(68%)

1,846
(78%)

2,531
(78%)

ND 5,370
(87%)

No. of novel sequence insertions (% novel) ND ND ND ND 111
(96%)

66
(86%)

174
(93%)

ND 174
(93%)

b Exon populations separately

Statistic CEU TSI LWK YRI CHB CHD JPT

Samples 90 66 108 112 109 107 105
Total collected bases (Gb) 151 64 53 147 93 127 211
Mean mapped depth on target (3) 73 71 32 62 47 62 53
No. of SNPs (% novel) 3,489 (34%) 3,281 (34%) 5,459 (50%) 5,175 (46%) 3,415 (47%) 3,431 (50%) 2,900 (42%)
Variant SNP sites per individual 715 727 902 794 713 770 694
No. of indels (no. novel) 23 (10) 22 (11) 24 (16) 38 (21) 30 (16) 26 (13) 25 (11)
Variant indel sites per individual 3 3 3 3 3 2 3

NA, not applicable; ND, not determined.
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where increased depth of coverage and sample size resulted in a higher
fraction of low-frequency variants among discovered sites, 96% of
novel variants were restricted to samples from a single analysis panel.
In contrast, many novel structural variants were identified in all ana-
lysis panels, reflecting the lower degree of previous characterization
(Supplementary Fig. 4).

Populations with African ancestry contributed the largest number
of variants and contained the highest fraction of novel variants,
reflecting the greater diversity in African populations. For example,
63% of novel SNPs in the low-coverage project and 44% in the exon
project were discovered in the African populations, compared to 33%
and 22% in the European ancestry populations.

The larger sample sizes in the exon and low-coverage projects
allowed us to detect a large number of low-frequency variants
(MAF ,5%, Fig. 1b). Compared to the distribution expected from
population genetic theory (the neutral coalescent with constant popu-
lation size), we saw an excess of lower frequency variants in the exon
project, reflecting purifying selection against weakly deleterious
mutations and recent population growth. There are signs of a similar
excess in the low-coverage project SNPs, truncated below 5% variant
allele frequency by reduction in power of our call set to discover
variants in this range, as discussed below.

As expected, nearly all of the high-frequency SNPs discovered here
were already present in dbSNP; this was particularly true in coding
regions (Fig. 1c). The public databases were much less complete for
SNPs at low frequencies, for short indels and for structural variants
(Fig. 1d). For example, in contrast to coding SNPs (91% of common
coding SNPs described here were already present in dbSNP), approxi-
mately 50% of common short indels observed in this project were
novel. These results are expected given the sample sizes used in the
sequencing efforts that discovered most of the SNPs previously in
dbSNP, and the more limited, and lower resolution, efforts to char-
acterize indels and larger structural variation across the genome.

The number of structural variants that we observed declined rapidly
with increasing variant length (Fig. 1d), with notable peaks correspond-
ing to Alus and long interspersed nuclear elements (LINEs). The pro-
portion of larger structural variants that was novel depended markedly
on allele size, with variants 10 bp to 5 kb in size most likely to be novel
(Fig. 1d). This is expected, as large (.5 kb) deletions and duplications
were previously discovered using array-based approaches17,18, whereas
smaller structural variants (apart from polymorphic Alu insertions) had
been less well ascertained before this study.

Mitochondrial and Y chromosome sequences
Deep coverage of the mitochondrial genome allowed us to manually
curate sequences for 163 samples (Supplementary Information).
Although variants that were fixed within an individual were consistent
with the known phylogeny of the mitochondrial genome
(Supplementary Fig. 5), we found a considerable amount of variation
within individuals (heteroplasmy). For example, length heteroplasmy
was detected in 79% of individuals compared with 52% using capillary
sequencing19, largely in the control region (Supplementary Fig. 6a).
Base-substitution heteroplasmy was observed in 45% of samples, seven
times higher than reported in the control region alone19, and was
spread throughout the molecule (Supplementary Fig. 6b). The extent
to which this heteroplasmy arose in cell culture remains unknown, but
appears low (Supplementary Information).

The Y chromosome was sequenced at an average depth of 1.83 in
the 77 males in the low-coverage project, and 15.23 depth in the two
trio fathers. Using customized analysis methods (Supplementary
Information), we identified 2,870 variable sites, 74% novel, with 55
out of 56 passing independent validation. The Y chromosome phylo-
geny derived from the new variants identified novel, well supported
clades within some of the 12 major haplogroups represented among
the samples (for example, O2b in China and Japan; Supplementary
Fig. 7). A striking pattern indicative of a recent rapid expansion
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Figure 1 | Properties of the variants found. a, Venn diagrams showing the
numbers of SNPs identified in each pilot project in each population or analysis
panel, subdivided according to whether the SNP was present in dbSNP release
129 (Known) or not (Novel). Exon analysis panel AFR is YRI1LWK, ASN is
CHB1CHD1JPT, and EUR is CEU1TSI. Note that the scale for the exon
project column is much larger than for the other pilots. b, The number of variants
per megabase (Mb) at different allele frequencies divided by the expectation
under the neutral coalescent (1/i, where i is the variant allele count), thus giving an
estimate of theta per megabase. Blue, low-coverage SNPs; red, low-coverage
indels; black, low-coverage genotyped large deletions; green, exon SNPs. The
spikes at the right ends of the lines correspond to excess variants for which all
samples differed from the reference (approximately 1 per 30 kb), consistent with
errors in the reference sequence. c, Fraction of variants in each allele frequency
class that were novel. Novelty was determined by comparison to dbSNP release
129 for SNPs and small indels, dbVar (June 2010) for deletions, and two
published genomes10,11 for larger indels. LC, low coverage; EX, exon. d, Size
distribution and novelty of variants discovered in the low-coverage project. SNPs
are shown in blue, deletions with respect to the reference sequence in red, and
insertions or duplications with respect to the reference in green. The fraction of
variants in each size bin that were novel is shown by the purple line, and is defined
relative to dbSNP (SNPs and indels), dbVar (deletions, duplications, mobile
element insertions), dbRIP and other studies47 (mobile element insertions), J. C.
Venter and J. Watson genomes10,11 (short indels and large deletions), and short
indels from split capillary reads48. To account for ambiguous placement of many
indels, discovered indels were deemed to match known indels if they were within
25 bp of a known indel of the same size. To account for imprecise knowledge of
the location of most deletions and duplications, discovered variants were deemed
to match known variants if they had .50% reciprocal overlap.
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specific to haplogroup R1b was observed, consistent with the postu-
lated Neolithic origin of this haplogroup in Europe20.

Power to detect variants
The ability of sequencing to detect a site that is segregating in the
population is dominated by two factors: whether the non-reference
allele is present among the individuals chosen for sequencing, and the
number of high-quality and well-mapped reads that overlap the vari-
ant site in individuals who carry it. Simple models show that for a
given total amount of sequencing, the number of variants discovered
is maximized by sequencing many samples at low coverage21,22. This is
because high coverage of a few genomes, although providing the high-
est sensitivity and accuracy in genotyping a single individual, involves
considerable redundancy and misses variation not represented by
those samples. The low-coverage project provides us with an empirical
view of the power of low-coverage sequencing to detect variants of
different types and frequencies.

Figure 2a shows the rate of discovery of variants in the CEU (see
Box 1 for definitions of this and other populations) samples of the
low-coverage project as assessed by comparison to external data
sources: HapMap and the exon project for SNPs and array CGH
data18 for large deletions. We estimate that although the low-coverage
project had only ,25% power to detect singleton SNPs, power to
detect SNPs present five times in the 120 sampled chromosomes
was ,90% (depending on the comparator), and power was essentially
complete for those present ten or more times. Similar results were
seen in the YRI and CHB1JPT analysis panels at high allele counts,
but slightly worse performance for variants present five times (,85%
and 75%, respectively, at HapMap II sites; Supplementary Fig. 8).
These results indicate that SNP discovery is less affected by the extent
of LD (which is lowest in the YRI) than by sequencing coverage
(which was lowest in the CHB and JPT panels).

For deletions larger than 500 bp, power was approximately 40% for
singletons and reached 90% for variants present ten times or more in
the sample set. Our use of several algorithms for structural variant
discovery ensured that all major mechanistic subclasses of deletions
were found in our analyses (Supplementary Fig. 9). The lack of appro-
priate comparator data sets for short indels and larger structural
variants other than deletions prevented a detailed assessment of the
power to detect these types of variants. However, power to detect short
indels was approximately 70% for variants present at least five times in
the sample, based on the rediscovery of indels in samples overlapping
with the SeattleSNPs project23. Extrapolating from comparisons to
Alu insertions discovered in the J. C. Venter genome24 indicated an
average sensitivity for common mobile element insertions of about
75%. Analysis of a set of duplications18 indicated that only 30–40% of
common duplications were discovered here, mostly as deletions with
respect to the reference. Methods capable of discovering inversions
and novel sequence insertions in low-coverage data with comparable
specificity remain to be developed.

In summary, low-coverage shotgun sequencing provided modest
power for singletons in each sample (,25–40%), and very good power
for variants seen five or more times in the samples sequenced. We
estimate that there was approximately 95% power to find SNPs with
5% allele frequency in the sequenced samples, and nearly 90% power
to find SNPs with 5% allele frequency in populations related by 1%
divergence (Fig. 2b). Thus, we believe that the projects found almost
all accessible common variation in the sequenced populations and the
vast majority of common variants in closely related populations.

Genotype accuracy
Genotypes, and, where possible, haplotypes, were inferred for most
variants in each project (see Supplementary Information and Table 1).
For the low-coverage data, statistically phased SNP genotypes were
derived by using LD structure in addition to sequence information at
each site, in part guided by the HapMap 3 phased haplotypes. SNP

genotype accuracy varied considerably between projects (trio, low
coverage and exon), and as a function of coverage and allele fre-
quency. In the low-coverage project, the overall genotype error rate
(based on a consensus of multiple methods) was 1–3% (Fig. 2c and
Supplementary Fig. 10). The use of HapMap 3 data greatly assisted
phasing of the CEU and YRI samples, for which the HapMap 3 geno-
types were phased by transmission, but had a more modest effect on
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Figure 2 | Variant discovery rates and genotype accuracy in the low-
coverage project. a, Rates of low-coverage variant detection by allele frequency
in CEU. Lines show the fraction of variants seen in overlapping samples in
independent studies that were also found to be polymorphic in the low-
coverage project (in the same overlapping samples), as a function of allele count
in the 60 low-coverage samples. Note that we plot power against expected allele
count in 60 samples; for example, a variant present in, say, 2 copies in an
overlap of 30 samples is expected to be present 4 times in 60 samples. The
crosses on the right represent the average discovery fraction for all variants
having more than 10 copies in the sample. Red, HapMap II sites, excluding sites
also in HapMap 3 (43 overlapping samples); blue, exon project sites (57
overlapping samples); green, deletions from ref. 18 (60 overlapping samples;
deletions were classified as ‘found’ if there was any overlap). Error bars show
95% confidence interval. b, Estimated rates of discovery of variants at different
frequencies in the CEU (blue), a population related to the CEU with Fst 5 1%
(green), and across Europe as a whole (light blue). Inset: cartoon of the
statistical model for population history and thus allele frequencies in related
populations where an ancestral population gave rise to many equally related
populations, one of which (blue circle) has samples sequenced. c, SNP genotype
accuracy by allele frequency in the CEU low-coverage project, measured by
comparison to HapMap II genotypes at sites present in both call sets, excluding
sites that were also in HapMap 3. Lines represent the average accuracy of
homozygote reference (red), heterozygote (green) and homozygote alternative
calls (blue) as a function of the alternative allele count in the overlapping set of
43 samples, and the overall genotype error rate (grey, at bottom of plot). Inset:
number of each genotype class as a function of alternative allele count.
d, Coverage and accuracy for the low-coverage and exon projects as a function
of depth threshold. For 41 CEU samples sequenced in both the exon and low-
coverage projects, on the x axis is shown the number of non-reference SNP
genotype calls at HapMap II sites not in HapMap 3 that were called in the exon
project target region, and on the y axis is shown the number of these calls that
were not variant (that is, are reference homozygote and thus incorrectly were
called as variant) according to HapMap II. Each point plotted corresponds to a
minimum depth threshold for called sites. Grey lines show constant error rates.
The exon project calls (red) were made independently per sample, whereas the
low-coverage calls (blue), which were only slightly less accurate, were made
using LD information that combined partial information across samples and
sites in an imputation-based algorithm. The additional data added from point
‘1’ to point ‘0’ (upper right in the figure) for the low-coverage project were
completely imputed.
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genotype accuracy away from HapMap 3 sites (for further details see
Supplementary Information).

The accuracy at heterozygous sites, a more sensitive measure than
overall accuracy, was approximately 90% for the lowest frequency
variants, increased to over 95% for intermediate frequencies, and
dropped to 70–80% for the highest frequency variants (that is, those
where the reference allele is the rare allele). We note that these num-
bers are derived from sites that can be genotyped using array techno-
logy, and performance may be lower in harder to access regions of the
genome. We find only minor differences in genotype accuracy
between populations, reflecting differences in coverage as well as
haplotype diversity and extent of LD.

The accuracy of genotypes for large deletions was assessed against
previous array-based analyses18 (Supplementary Fig. 11). The geno-
type error rate across all allele frequencies and genotypes was ,1%,
with the accuracy of heterozygous genotypes at low (MAF ,3%),
intermediate (MAF ,50%) and high-frequency (MAF .97%) var-
iants estimated at 86%, 97% and 83%, respectively. The greater appar-
ent genotype accuracy of structural variants compared to SNPs in the
low-coverage project reflects the increased number of informative
reads per individual for variants of large size and a bias in the known
large deletion genotype set for larger, easier to genotype variants.

For calling genotypes in the low-coverage samples, the utility of
using LD information in addition to sequence data at each site was
demonstrated by comparison to genotypes of the exon project, which
were derived independently for each site using high-coverage data.
Figure 2d shows the SNP genotype error rate as a function of depth at
the genotyped sites in CEU. A similar number of variants was called,
and at comparable accuracy, using minimum 43 depth in the low-
coverage project as was obtained with minimum 153 depth in the
exon project. To genotype a high fraction of sites both projects needed
to make calls at sites with low coverage, and the LD-based calling
strategy for the low-coverage project used imputation to make calls
at nearly 15% more sites with only a modest increase in error rate.

The accuracy and completeness of the individual genome
sequences in the low-coverage project could be estimated from the
trio mothers, each of whom was sequenced to high coverage, and for
whom data subsampled to 43 were included in the low-coverage
analysis. Comparison of the SNP genotypes in the two projects
showed that where the CEU mother had at least one variant allele
according to the trio analysis, in 96.9% of cases the variant was also
identified in the low-coverage project and in 93.8% of cases the geno-
type was accurately inferred. For the YRI trio mother the equivalent
figures are 95.0% and 88.4%, respectively (note that false positives in
the trio calls will lead to underestimates of the accuracy).

Putative functional variants
An individual’s genome contains many variants of functional con-
sequence, ranging from the beneficial to the highly deleterious. We
estimated that an individual typically differs from the reference
human genome sequence at 10,000–11,000 non-synonymous sites

(sequence differences that lead to differences in the protein sequence)
in addition to 10,000–12,000 synonymous sites (differences in coding
exons that do not lead to differences in the protein sequence; Table 2).
We found a much smaller number of variants likely to have greater
functional impact: 190–210 in-frame indels, 80–100 premature stop
codons, 40–50 splice-site-disrupting variants and 220–250 deletions
that shift reading frame, in each individual. We estimated that each
genome is heterozygous for 50–100 variants classified by the Human
Gene Mutation Database (HGMD) as causing inherited disorders
(HGMD-DM). Estimates from the different pilot projects were con-
sistent with each other, taking into consideration differences in power
to detect low-frequency variants, fraction of the accessible genome
and population differences (Table 2), as well as with previous obser-
vations based on personal genome sequences10,11. Collectively, we
refer to the 340–400 premature stops, splice-site disruptions and
frame shifts, affecting 250–300 genes per individual, as putative
loss-of-function (LOF) variants.

In total, we found 68,300 non-synonymous SNPs, 34,161 of which
were novel (Table 2). In an early analysis, 21,657 non-synonymous
SNPs were validated as polymorphic in 620 samples using a custom
genotyping array (Supplementary Information). The mean minor
allele frequency in the array data was 2.2% for 4,573 novel variants,
and 26.2% for previously discovered variants.

Overall we rediscovered 671 (1.3%) of the 50,361 coding single
nucleotide variants in HGMD-DM (Supplementary Table 5). The
types of disease for which variants were identified were biased towards
certain categories (Supplementary Fig. 12), with diseases associated
with the eye and reproduction significantly over represented and
diseases of the nervous system significantly under represented.
These biases reflect multiple factors including differences in the fit-
ness effects of the variants, the extent of medical genetics research and
differences in the false reporting rate among ‘disease causing’ variants.

As expected, and consistent with purifying selection, putative func-
tional variants had an allele frequency spectrum depleted at higher allele
frequencies, with putative LOF variants showing this effect more strongly
(Supplementary Fig. 13). Of the low-coverage non-synonymous, stop-
introducing, splice-disrupting and HGMD-DM variants, 67.3%, 77.3%,
82.2% and 84.7% were private to single populations, compared to 61.1%
for synonymous variants. Across these same functional classes, 15.8%,
25.9%, 21.6% and 19.9% of variants were found in only a single indi-
vidual, compared to 11.8% of synonymous variants.

The tendency for deleterious functional variants to have lower allele
frequencies has consequences for the discovery and analysis of this
type of variation. In the deeply sequenced CEU trio father, who was
not included in the low-coverage project, 97.8% of all single base
variants had been found in the low-coverage project, but only 95%
of non-synonymous, 88% of stop-inducing and 85% of HGMD-DM
variants. The missed variants correspond to 389 non-synonymous, 11
stop-inducing and 13 HGMD-DM variants. As sample size increases,
the number of novel variants per sequenced individual will decrease,
but only slowly. Analyses based on the exon project data (Fig. 3)

Table 2 | Estimated numbers of potentially functional variants in genes

Class
Combined

total
Combined

novel

Low coverage High-coverage trio Exon capture

Total Interquartile* Total Individual range Total Interquartile* GENCODE extrapolation

Synonymous SNPs 60,157 23,498 55,217 10,572–12,126 21,410 9,193–12,500 5,708 461–532 11,553–13,333
Non-synonymous SNPs 68,300 34,161 61,284 9,966–10,819 19,824 8,299–10,866 7,063 396–441 9,924–11,052
Small in-frame indels 714 383 666 198–205 289 130–178 59 1–3 ,25–75
Stop losses 77 40 71 9–11 22 4–14 6 0–0 ,0–0
Stop-introducing SNPs 1,057 755 951 88–101 192 67–100 82 2–3 ,50–75
Splice-site-disrupting SNPs 517 399 500 41–49 82 28–45 3 1–1 ,50
Small frameshift indels 954 551 890 227–242 433 192–280 37 0–1 ,0–25
Genes disrupted by large deletions 147 71 143 28–36 82 33–49 ND ND ND
Total genes containing LOF variants 2,304 NA 1,795 272–297 483 240–345 77 3–4 ,75–100
HGMD ‘damaging mutation’ SNPs 671 NA 578 57–80 161 48–82 99 2–4 ,50–100

NA, not applicable; ND, not determined.
* Interquartile range of the number of variants of specified type per individual.
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showed that, on average, 99% of the synonymous variants in an indi-
vidual would be found in 100 deeply sequenced samples, whereas 250
samples would be required to find 99% of non-synonymous variants
and 320 samples would still find only 97.4% of the LOF variants
present in an individual. Using detection power data from Fig. 2a,
we estimated that 250 samples sequenced at low coverage would be
needed to find 99% of the synonymous variants in an individual, and
with 320 sequenced samples 98.5% of non-synonymous and 96.3% of
LOF variants would be found.

Application to association studies
Whole-genome sequencing enables all genetic variants present in a
sample set to be tested directly for association with a given disease or
trait. To quantify the benefit of having more complete ascertainment of
genetic variation beyond that achievable with genotyping arrays, we
carried out expression quantitative trait loci (eQTL) association tests
on the 142 low-coverage samples for which expression data are avail-
able in the cell lines25. When association analysis (Spearman rank
correlation, FDR ,5%, eQTLs within 50 kb of probe) was performed
using all sites discovered in the low-coverage project, a larger number
of significant eQTLs (increase of ,20% to 50%) was observed as
compared to association analysis restricted to sites present on the
Illumina 1M chip (Supplementary Table 6). The increase was lower
in the CHB1JPT and CEU samples, where greater LD exists between
previously examined and newly discovered variants, and higher in the
YRI samples, where there are more novel variants and less LD. These
results indicate that, while modern genotyping arrays capture most of
the common variation, there remain substantial additional contribu-
tions to phenotypic variation from the variants not well captured by the
arrays.

Population sequencing of large phenotyped cohorts will allow
direct association tests for low-frequency variants, with a resolution
determined by the LD structure. An alternative that is less expensive,
albeit less accurate, is to impute variants from a sequenced reference
panel into previously genotyped samples26,27. We evaluated the accu-
racy of imputation that uses the current low-coverage project haplo-
types as the reference panel. Specifically, we compared genotypes
derived by deep sequencing of one individual in each trio (the fathers)
with genotypes derived using the HapMap 3 genotype data (which
combined data from the Affymetrix 6.0 and Illumina 1M arrays) in
those same two individuals and imputation based on the low-coverage

project haplotypes to fill in their missing genotypes. At variant sites
(that is, where the father was not homozygous for the reference
sequence), imputation accuracy was highest for SNPs at which the
minor allele was observed at least six times in our low-coverage sam-
ples, with an error rate of ,4% in CEU and ,10% in YRI, and became
progressively worse for rarer SNPs, with error rates of 35% for sites
where the minor allele was observed only twice in the low-coverage
samples (Fig. 4a).

Although the ability to impute rare variants accurately from the 1000
Genomes Project resource is currently limited, the completeness of the
resource nevertheless increases power to detect association signals. To
demonstrate the utility of imputation in disease samples, we imputed
into an eQTL study of ,400 children of European ancestry28 using the
low-coverage pilot data and HapMap II as reference panels. By com-
parison to directly genotyped sites we estimated that the effective
sample size at variants imputed from the pilot CEU low-coverage data
set is 91% of the true sample size for variants with allele frequencies
above 10%, 76% in the allele frequency range 4–6%, and 54% in the
range 1–2%. Imputing over 6 million variants from the low-coverage
project data increased the number of detected cis-eQTLs by ,16%,
compared to a 9% increase with imputing from HapMap II (FDR 5%,
signal within 50 kb of transcript; for an example see Fig. 4b).

In addition to this modest increase in the number of discoveries,
testing almost all common variants allows identification of many
additional candidate variants that might underlie each association.
For example, we find that rs11078928, a variant in a splice site for
GSDMB, is in strong LD with SNPs near ORMDL3, previously asso-
ciated with asthma, Crohn’s disease, type 1 diabetes and rheumatoid
arthritis, thus leading to the hypothesis that GSDMB could be the
causative gene in these associations. Although rs11078928 is not
newly discovered, it was not included in HapMap or on commercial
SNP arrays, and thus could not have been identified as associated with
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these diseases before this project. Similarly, a recent study29 used
project data to show that coding variants in APOL1 probably underlie
a major risk for kidney disease in African-Americans previously
attributed (at a lower effect size) to MYH9. These examples demon-
strate the value of having much more complete information on LD,
the almost complete set of common variants, and putative functional
variants in known association intervals.

Testing almost all common variants also allows us to examine general
properties of genetic association signals. The NHGRI GWAS catalogue
(http://www.genome.gov/gwastudies, accessed 15 July 2010) described
1,227 unique SNPs associated with one or more traits (P , 5 3 1028).
Of these, 1,185 (96.5%) are present in the low-coverage CEU data set.
Under 30% of these are either annotated as non-synonymous variants
(77, 6.5%) or in substantial LD (r2 . 0.5) with a non-synonymous
variant (272, 23%). In the latter group, only 93 (8.4%) are in strong
LD (r2 . 0.9) with a non-synonymous variant. Because we tested ,95%
of common variation, these results indicate that no more than one-third
of complex trait association signals are likely to be caused by common
coding variation. Although it remains to be seen whether reported
associations are better explained through weak LD to coding variants
with strong effects, these results are consistent with the view that most
contributions of common variation to complex traits are regulatory in
nature.

Mutation, recombination and natural selection
Project sequence data allowed us to investigate fundamental processes
that shape human genetic variation including mutation, recombina-
tion and natural selection.

Detecting de novo mutations in trio samples
Deep sequencing of individuals within a pedigree offers the potential
to detect de novo germline mutation events. Our approach was to
allow a relatively high FDR in an initial screen to capture a large
fraction of true events and then use a second technology to rule out
false-positive mutations.

In the CEU and YRI trios, respectively, 3,236 and 2,750 candidate
de novo germline single-base mutations were selected for further
study, based on their presence in the child but not the parents. Of
these, 1,001 (CEU) and 669 (YRI) were validated by re-sequencing the
cell line DNA. When these were tested for segregation to offspring
(CEU) or in non-clonal DNA from whole blood (YRI), only 49 CEU
and 35 YRI candidates were confirmed as true germline mutations.
Correcting for the fraction of the genome accessible to this analysis
provided an estimate of the per generation base pair mutation rate of
1.2 3 1028 and 1.0 3 1028 in the CEU and YRI trios, respectively.
These values are similar to estimates obtained from indirect evolu-
tionary comparisons30, direct studies based on pathogenic muta-
tions31, and a recent analysis of a single family32.

We infer that the remaining vast majority (952 CEU and 634 YRI)
of the validated variants were somatic or cell line mutations. The
greater number of these validated non-germline mutations in the
CEU cell line perhaps reflects the greater age of the CEU cell culture.
Across the two trio offspring, we observed a single, synonymous,
coding germline mutation, and 17 coding non-germline mutations
of which 16 were non-synonymous, perhaps indicative of selection
during cell culture.

Although the number of non-germline variants found per indi-
vidual is a very small fraction of the total number of variants per
individual (,0.03% for the CEU child and ,0.02% for the YRI child),
these variants will not be shared between samples. Assuming that the
number of non-germline mutations in these two trios is representative
of all cell line DNA we analysed, we estimate that non-germline muta-
tions might constitute 0.36% and 2.4% of all variants, and 0.61% and
3.1% of functional variants, in the low-coverage and exon pilots,
respectively. In larger samples, of thousands, the overall false-positive
rates from cell line mutations would become significant, and confound

interpretation, indicating that large-scale studies should use DNA
from primary tissue, such as blood, where possible.

The effects of selection on local variation
Natural selection can affect levels of DNA variation around genes in
several ways: strongly deleterious mutations will be rapidly eliminated
by natural selection, weakly deleterious mutations may segregate in
populations but rarely become fixed, and selection at nearby sites
(both purifying and adaptive) reduces genetic variation through back-
ground selection33 and the hitch-hiking effect34. The effect of these
different forces on genetic variation can be disentangled by examining
patterns of diversity and divergence within and around known func-
tional elements. The low-coverage data enables, for the first time,
genome-wide analysis of such patterns in multiple populations.
Figure 5a (top panel) shows the pattern of diversity relative to genic
regions measured by aggregating estimates of heterozygosity around
protein-coding genes. Within genes, exons harbour the least diversity
(about 50% of that of introns) and 59 and 39 UTRs harbour slightly less
diversity than immediate flanking regions and introns. However, this
variation in diversity is fully explained by the level of divergence
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variant was recorded and averaged.
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(Fig. 5a, bottom panel), consistent with the common part of the allele
frequency spectrum being dominated by effectively neutral variants,
and weakly deleterious variants contributing only to the rare end of
the frequency spectrum.

In contrast, diversity in the immediate vicinity of genes (scaled by
divergence) is reduced by approximately 10% relative to sites distant
from any gene (Fig. 5b). Although a similar reduction has been seen
previously in gene-dense regions35, project data enable the scale of the
effect to be determined. We find that the reduction extends up to
0.1 cM away from genes, typically 85 kb, indicating that selection at
linked sites restricts variation relative to neutral levels across the
majority of the human genome.

Population differentiation and positive selection
Previous inferences about demographic history and the role of local
adaptation in shaping human genetic variation made from genome-
wide genotype data4,36,37 have been limited by the partial and complex
ascertainment of SNPs on genotyping arrays. Although data from the
1000 Genomes Project pilots are neither fully comprehensive nor fully
free of ascertainment bias (issues include low power for rare variants,
noise in allele frequency estimates, some false positives, non-random
data collection across samples, platforms and populations, and the use
of imputed genotypes), they can be used to address key questions about
the extent of differentiation among populations, the presence of highly
differentiated variants and the ability to fine-map signals of local
adaptation.

Although the average level of population differentiation is low (at
sites genotyped in all populations the mean value of Wright’s Fst is 0.071
between CEU and YRI, 0.083 between YRI and CHB1JPT, and 0.052
between CHB1JPT and CEU), we find several hundred thousand SNPs
with large allele frequency differences in each population comparison
(Fig. 5c). As seen in previous studies4,37, the most highly differentiated
sites were enriched for non-synonymous variants, indicative of the
action of local adaptation. The completeness of common variant dis-
covery in the low-coverage resource enables new perspectives in the
search for local adaptation. First, it provides a more comprehensive
catalogue of fixed differences between populations, of which there are
very few: two between CEU and CHB1JPT (including the A111T
missense variant in SLC24A5 (ref. 38) contributing to light skin colour),
four between CEU and YRI (including the 246 GATA box null muta-
tion upstream of DARC39, the Duffy O allele leading to Plasmodium
vivax malaria resistance) and 72 between CHB1JPT and YRI (includ-
ing 24 around the exocyst complex component gene EXOC6B); see
Supplementary Table 7 for a complete list. Second, it provides new
candidates for selected variants, genes and pathways. For example, we
identified 139 non-synonymous variants showing large allele frequency
differences (at least 0.8) between populations (Supplementary Table 8),
including at least two genes involved in meiotic recombination—
FANCA (ninth most extreme non-synonymous SNP in CEU versus
CHB1JPT) and TEX15 (thirteenth most extreme non-synonymous
SNP in CEU versus YRI, and twenty-sixth most extreme non-synonym-
ous SNP in CHB1JPT versus YRI). Because we are finding almost all
common variants in each population, these lists should contain the vast
majority of the near fixed differences among these populations. Finally,
it improves the fine mapping of selective sweeps (Supplementary Fig.
14) and analysis of the dynamics of location adaptation. For example,
we find that the signal of population differentiation around high Fst

genic SNPs drops by half within, on average, less than 0.05 cM (typically
30–50 kb; Fig. 5d). Furthermore, 51% of such variants are polymorphic
in both populations. These observations indicate that much local
adaptation has occurred by selection acting on existing variation rather
than new mutation.

The effect of recombination on local sequence evolution
We estimated a fine-scale genetic map from the phased low-coverage
genotypes. Recombination hotspots were narrower than previously

estimated4 (mean hotspot width of 2.3 kb compared to 5.5 kb in
HapMap II; Fig. 6a), although, unexpectedly, the estimated average
peak recombination rate in hotspots is lower in YRI (13 cM Mb21)
than in CEU and CHB1JPT (20 cM Mb21). In addition, crossover
activity is less concentrated in the genome in YRI, with 70% of recom-
bination occurring in 10% of the sequence rather than 80% of the
recombination for CEU and CHB1JPT (Fig. 6b). A possible biological
basis for these differences is that PRDM9, which binds a DNA motif
strongly enriched in hotspots and influences the activity of LD-defined
hotspots40–43, shows length variation in its DNA-binding zinc fingers
within populations, and substantial differentiation between African
and non-African populations, with a greater allelic diversity in
Africa43. This could mean greater diversity of hotspot locations within
Africa and therefore a less concentrated picture in this data set of
recombination and lower usage of LD-defined hotspots (which require
evidence in at least two populations and therefore will not reflect hot-
spots present only in Africa).

The low-coverage data also allowed us to address a long-standing
debate about whether recombination has any local mutagenic effect.
Direct examination of diversity around hotspots defined from LD
data are potentially biased (because the detection of hotspots requires
variation to be present), but we can, without bias, examine rates of
SNP variation and recombination around the PRDM9 binding motif
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Figure 6 | Recombination. a, Improved resolution of hotspot boundaries. The
average recombination rate estimated from low-coverage project data around
recombination hotspots detected in HapMap II. Recombination hotspots were
narrower, and in CEU (orange) and CHB1JPT (purple) more intense than
previously estimated. See panel b for key. b, The concentration of
recombination in a small fraction of the genome, one line per chromosome. If
recombination were uniformly distributed throughout the genome, then the
lines on this figure would appear along the diagonal. Instead, most
recombination occurs in a small fraction of the genome. Recombination rates in
YRI (green) appeared to be less concentrated in recombination hotspots than
CEU (orange) or CHB1JPT (purple). HapMap II estimates are shown in black.
c, The relationship between genetic variation and recombination rates in the
YRI population. The top plot shows average levels of diversity, measured as
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defined as in the top plot.
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associated with hotspots. Figure 6c shows the local recombination rate
and pattern of SNP variation around the motif compared to the same
plots around a motif that is a single base difference away. Although the
motif is associated with a sharp peak in recombination rate, there is no
systematic effect on local rates of SNP variation. We infer that,
although recombination may influence the fate of new mutations,
for example through biased gene conversion, there is no evidence that
it influences the rate at which new variants appear.

Discussion
The 1000 Genomes Project launched in 2008 with the goal of creating
a public reference database for DNA polymorphism that is 95% com-
plete at allele frequency 1%, and more complete for common variants
and exonic variants, in each of multiple human population groups.
The three pilot projects described here were designed to develop and
evaluate methods to use high-throughput sequencing to achieve these
goals. The results indicate (1) that robust protocols now exist for
generating both whole-genome shotgun and targeted sequence data;
(2) that algorithms to detect variants from each of these designs have
been validated; and (3) that low-coverage sequencing offers an effi-
cient approach to detect variation genome wide, whereas targeted
sequencing offers an efficient approach to detect and accurately geno-
type rare variants in regions of functional interest (such as exons).

Data from the pilot projects are already informing medical genetic
studies. As shown in our analysis of previous eQTL data sets, a more
complete catalogue of genetic variation can identify signals previously
missed and markedly increase the number of identified candidate
functional alleles at each locus. Project data have been used to impute
over 6 million genetic variants into GWAS, for traits as diverse as
smoking44 and multiple sclerosis45, as an exclusionary filter in
Mendelian disease studies46 and tumour sequencing studies, and to
design the next generation of genotyping arrays.

The results from this study also provide a template for future genome-
wide sequencing studies on larger sample sets. Our plans for achieving
the 1000 Genomes Project goals are described in Box 2. Other studies
using phenotyped samples are already using components of the design
and analysis framework described above.

Measurement of human DNA variation is an essential prerequisite
for carrying out human genetics research. The 1000 Genomes Project
represents a step towards a complete description of human DNA
polymorphism. The larger data set provided by the full 1000
Genomes Project will allow more accurate imputation of variants in
GWAS and thus better localization of disease-associated variants. The
project will provide a template for studies using genome-wide
sequence data. Applications of these data, and the methods developed
to generate them, will contribute to a much more comprehensive
understanding of the role of inherited DNA variation in human his-
tory, evolution and disease.

METHODS SUMMARY
The Supplementary Information provides full details of samples, data generation
protocols, read mapping, SNP calling, short insertion and deletion calling, struc-
tural variation calling and de novo assembly. Details of methods used in the
analyses relating to imputation, mutation rate estimation, functional annotation,
population genetics and extrapolation to the full project are also presented.
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coordination; N. Kälin, F. Laplace, J. Wilde, S. Paturej, I. Kühndahl, J. Knight, C. Kodira
and M. Boehnke for valuable discussions; Z. Cheng, S. Sajjadian and F. Hormozdiari for
assistance in managing data sets; and D. Leja for help with the figures. We thank the
Yoruba in Ibadan, Nigeria, the Han Chinese in Beijing, China, the Japanese in Tokyo,
Japan, the Utah CEPH community, the Luhya in Webuye, Kenya, the Toscani in Italia,
and the Chinese in Denver, Colorado, for contributing samples for research. This
research was supported in part by Wellcome Trust grants WT089088/Z/09/Z to
R.M.D.; WT085532AIA to P.F.; WT086084/Z/08/Z to G.A.M.; WT081407/Z/06/Z to
J.S.K.; WT075491/Z/04 to G.L.; WT077009 to C.T.-S.; Medical Research Council grant
G0801823 to J.L.M.; British Heart Foundation grant RG/09/012/28096 to C.A.; The
Leverhulme Trust and EPSRC studentships to L.M. and A.T.; the Louis-Jeantet
Foundation and Swiss National Science Foundation in support of E.T.D. and S.B.M.;
NGI/EBI fellowship 050-72-436 to K.Y.; a National Basic Research Program of China
(973 program no. 2011CB809200); the National Natural Science Foundation of China
(30725008, 30890032, 30811130531, 30221004); the Chinese 863 program
(2006AA02Z177, 2006AA02Z334, 2006AA02A302, 2009AA022707); the Shenzhen
Municipal Government of China (grants JC200903190767A, JC200903190772A,
ZYC200903240076A, CXB200903110066A, ZYC200903240077A,
ZYC200903240076A and ZYC200903240080A); the Ole Rømer grant from the
DanishNatural ScienceResearchCouncil; anEmmyNoether Fellowshipof the German
Research Foundation (Deutsche Forschungsgemeinschaft) to J.O.K.; BMBF grant
01GS08201; BMBF grant PREDICT 0315428A to R.H.; BMBF NGFN PLUS and EU 6th
framework READNA to S.S.; EU 7th framework 242257 to A.V.S.; the Max Planck
Society; a grant from Genome Quebec and the Ministry of Economic Development,
Innovation and Trade, PSR-SIIRI-195 to P.A.; the Intramural Research Program of the
NIH; the National Library of Medicine; the National Institute of Environmental Health
Sciences; and NIH grants P41HG4221 and U01HG5209 to C.L.; P41HG4222 to J.S.;
R01GM59290 to L.B.J. and M.A.B.; R01GM72861 to M.P.; R01HG2651 and
R01MH84698 to G.R.A.; U01HG5214 to G.R.A. and A.C.; P01HG4120 to E.E.E.;
U54HG2750 to D.A.; U54HG2757 to A.C.; U01HG5210 to D.C.; U01HG5208 to M.J.D.;
U01HG5211 to R.A.G.; R01HG3698, R01HG4719 and RC2HG5552 to G.T.M.;
R01HG3229 to C.D.B. and A.G.C.; P50HG2357 to M.S.; R01HG4960 to B.L.B;
P41HG2371 and U41HG4568 to D.H.; R01HG4333 to A.M.L.; U54HG3273 to R.A.G.;
U54HG3067 to E.S.L.; U54HG3079 to R.K.W.; N01HG62088 to the Coriell Institute;
S10RR025056 to the Translational Genomics Research Institute; Al Williams
Professorship funds for M.B.G.; the BWF and Packard Foundation support for P.C.S.;
the Pew Charitable Trusts support for G.R.A.; and an NSF Minority Postdoctoral
Fellowship in support of R.D.H. E.E.E. is an HHMI investigator, M.P. is an HHMI Early
Career Scientist, and D.M.A. is Distinguished Clinical Scholar of the Doris Duke
Charitable Foundation.

Author Contributions Details of author contributions can be found in the author list.

Author Information Primary sequence reads, mapped reads, variant calls, inferred
genotypes, estimated haplotypes and new independent validation data are publicly
available through the project website (http://www.1000genomes.org); filtered sets of
variants, allele frequencies and genotypes are also deposited in dbSNP (http://
www.ncbi.nlm.nih.gov/snp). Reprints and permissions information is available at
www.nature.com/reprints. This paper is distributed under the terms of the Creative
Commons Attribution-Non-Commercial-Share Alike licence, and is freely available to
all readers at www.nature.com/nature. The authors declare competing financial
interests: details accompany the full-text HTML version of the paper at
www.nature.com/nature. Readers are welcome to comment on the online version of
this article at www.nature.com/nature. Correspondence and requests for materials
should be addressed to R.D. (rd@sanger.ac.uk).

The 1000 Genomes Consortium (Participants are arranged by project role, then by
institution alphabetically, and finally alphabetically within institutions except for
Principal Investigators and Project Leaders, as indicated.)

Corresponding author Richard M. Durbin1

Steering committee David Altshuler2,3,4 (Co-Chair), Richard M. Durbin1 (Co-Chair),
Gonçalo R. Abecasis5, David R. Bentley6, Aravinda Chakravarti7, Andrew G. Clark8,
Francis S. Collins9, Francisco M. De La Vega10, Peter Donnelly11, Michael Egholm12,
Paul Flicek13, Stacey B. Gabriel2, Richard A. Gibbs14, Bartha M. Knoppers15, Eric S.
Lander2, Hans Lehrach16, Elaine R. Mardis17, Gil A. McVean11,18, Deborah A.

ARTICLE RESEARCH

2 8 O C T O B E R 2 0 1 0 | V O L 4 6 7 | N A T U R E | 1 0 7 1

Macmillan Publishers Limited. All rights reserved©2011

http://pga.gs.washington.edu
http://pga.gs.washington.edu
www.nature.com/nature
http://www.1000genomes.org
http://www.ncbi.nlm.nih.gov/snp
http://www.ncbi.nlm.nih.gov/snp
www.nature.com/reprints
www.nature.com/nature
www.nature.com/nature
www.nature.com/nature
mailto:rd@sanger.ac.uk


Nickerson19, Leena Peltonen{, Alan J. Schafer20, Stephen T. Sherry21, Jun Wang22,23,
Richard K. Wilson17

Production group: Baylor College of Medicine Richard A. Gibbs14 (Principal
Investigator), David Deiros14, Mike Metzker14, Donna Muzny14, Jeff Reid14, David
Wheeler14; BGI-Shenzhen Jun Wang22,23 (Principal Investigator), Jingxiang Li22, Min
Jian22, Guoqing Li22, Ruiqiang Li22,23, Huiqing Liang22, Geng Tian22, Bo Wang22, Jian
Wang22, Wei Wang22, Huanming Yang22, Xiuqing Zhang22, Huisong Zheng22; Broad
Institute of MIT and Harvard Eric S. Lander2 (Principal Investigator), David
Altshuler2,3,4, Lauren Ambrogio2, Toby Bloom2, Kristian Cibulskis2, Tim J. Fennell2,
Stacey B. Gabriel2 (Co-Chair), David B. Jaffe2, Erica Shefler2, Carrie L. Sougnez2;
Illumina David R. Bentley6 (Principal Investigator), Niall Gormley6, Sean Humphray6,
Zoya Kingsbury6, Paula Kokko-Gonzales6, Jennifer Stone6; Life Technologies Kevin J.
McKernan24 (Principal Investigator), Gina L. Costa24, Jeffry K. Ichikawa24, Clarence C.
Lee24; Max Planck Institute for Molecular Genetics Ralf Sudbrak16 (Project Leader),
Hans Lehrach16 (Principal Investigator), Tatiana A. Borodina16, Andreas Dahl25, Alexey
N. Davydov16, Peter Marquardt16, Florian Mertes16, Wilfiried Nietfeld16, Philip
Rosenstiel26, Stefan Schreiber26, Aleksey V. Soldatov16, Bernd Timmermann16, Marius
Tolzmann16; Roche Applied Science Michael Egholm12 (Principal Investigator), Jason
Affourtit27, Dana Ashworth27, Said Attiya27, Melissa Bachorski27, Eli Buglione27, Adam
Burke27, Amanda Caprio27, Christopher Celone27, Shauna Clark27, David Conners27,
Brian Desany27, Lisa Gu27, Lorri Guccione27, Kalvin Kao27, Andrew Kebbel27, Jennifer
Knowlton27, Matthew Labrecque27, Louise McDade27, Craig Mealmaker27, Melissa
Minderman27, Anne Nawrocki27, Faheem Niazi27, Kristen Pareja27, Ravi Ramenani27,
David Riches27, Wanmin Song27, Cynthia Turcotte27, Shally Wang27; Washington
University in St Louis Elaine R. Mardis17 (Co-Chair) (Co-Principal Investigator), Richard
K. Wilson17 (Co-Principal Investigator), David Dooling17, Lucinda Fulton17, Robert
Fulton17, George Weinstock17; Wellcome Trust Sanger Institute Richard M. Durbin1

(Principal Investigator), John Burton1, David M. Carter1, Carol Churcher1, Alison
Coffey1, Anthony Cox1, Aarno Palotie1,28, Michael Quail1, Tom Skelly1, James Stalker1,
Harold P. Swerdlow1, Daniel Turner1

Analysis group: Agilent Technologies Anniek De Witte29, Shane Giles29; Baylor
College of Medicine Richard A. Gibbs14 (Principal Investigator), David Wheeler14,
Matthew Bainbridge14, Danny Challis14, Aniko Sabo14, Fuli Yu14, Jin Yu14;
BGI-Shenzhen Jun Wang22,23 (Principal Investigator), Xiaodong Fang22, Xiaosen
Guo22, Ruiqiang Li22,23, Yingrui Li22, Ruibang Luo22, Shuaishuai Tai22, Honglong Wu22,
HanchengZheng22, XiaoleZheng22, Yan Zhou22, Guoqing Li22, Jian Wang22, Huanming
Yang22; Boston College Gabor T. Marth30 (Principal Investigator), Erik P. Garrison30,
Weichun Huang31, Amit Indap30, Deniz Kural30, Wan-Ping Lee30, Wen Fung Leong30,
Aaron R. Quinlan32, Chip Stewart30, Michael P. Stromberg33, Alistair N. Ward30, Jiantao
Wu30; Brigham and Women’s Hospital Charles Lee34 (Principal Investigator), Ryan E.
Mills34, Xinghua Shi34; Broad Institute of MIT and Harvard Mark J. Daly2 (Principal
Investigator), MarkA.DePristo2 (Project Leader), David Altshuler2,34, Aaron D.Ball2, Eric
Banks2, Toby Bloom2, Brian L. Browning35, Kristian Cibulskis2, Tim J. Fennell2, Kiran V.
Garimella2, Sharon R. Grossman2,36, Robert E. Handsaker2, Matt Hanna2, Chris Hartl2,
David B. Jaffe2, Andrew M. Kernytsky2, Joshua M. Korn2, Heng Li2, Jared R. Maguire2,
Steven A. McCarroll2,4, Aaron McKenna2, James C. Nemesh2, Anthony A. Philippakis2,
Ryan E. Poplin2, Alkes Price37, Manuel A. Rivas2, Pardis C. Sabeti2,36, Stephen F.
Schaffner2, Erica Shefler2, Ilya A. Shlyakhter2,36; Cardiff University, The Human Gene
Mutation Database David N. Cooper38 (Principal Investigator), Edward V. Ball38,
Matthew Mort38, Andrew D. Phillips38, Peter D. Stenson38; Cold Spring Harbor
Laboratory Jonathan Sebat39 (Principal Investigator), Vladimir Makarov40, Kenny Ye41,
Seungtai C. Yoon40; Cornell and Stanford Universities Carlos D. Bustamante43

(Co-Principal Investigator), Andrew G. Clark8 (Co-Principal Investigator), Adam
Boyko43, Jeremiah Degenhardt8, Simon Gravel43, Ryan N. Gutenkunst44, Mark
Kaganovich43, Alon Keinan8, Phil Lacroute43, Xin Ma8, Andy Reynolds8; European
Bioinformatics Institute Laura Clarke13 (Project Leader), Paul Flicek13 (Co-Chair, DCC)
(Principal Investigator), Fiona Cunningham13, Javier Herrero13, Stephen Keenen13,
Eugene Kulesha13, Rasko Leinonen13, William M. McLaren13, Rajesh Radhakrishnan13,
RichardE.Smith13, Vadim Zalunin13, XiangqunZheng-Bradley13; European Molecular
Biology Laboratory JanO. Korbel45 (Principal Investigator), AdrianM. Stütz45; Illumina
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CORRECTIONS & AMENDMENTS

CORRIGENDUM
doi:10.1038/nature09991

A map of human genome variation
from population-scale sequencing
The 1000 Genomes Project Consortium

Nature 467, 1061–1073 (2010)

In this Article, Yali Xue, of the Wellcome Trust Sanger Institute,
Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
(Analysis group), and Reed A. Cartwright, of the Department of
Ecology and Evolutionary Biology, Rice University, Houston, Texas
77251, USA (Analysis group: University of Montreal), were inadvertently
omitted from the participant list. Also, the participants David Altshuler,
Jonathan Keebler, Paula Kokko-Gonzales and Deborah A. Nickerson
were listed incorrectly. In addition, Seungtai C. Yoon should be associated
with affiliation 40 (Seaver Autism Center and Department of Psychiatry,
Mount Sinai School of Medicine, New York, New York 10029, USA) and
not with affiliation 42 (Department of Genetics and Genomic Sciences,
Mount Sinai School of Medicine). These have been corrected in the
HTML and PDF versions of the manuscript. Supplementary Informa-
tion section 7.7 has also been corrected.
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