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We report a high-quality draft of the genome sequence of the grey, short-tailed opossum (Monodelphis domestica). As the
first metatherian (‘marsupial’) species to be sequenced, the opossum provides a unique perspective on the organization and
evolution of mammalian genomes. Distinctive features of the opossum chromosomes provide support for recent theories
about genome evolution and function, including a strong influence of biased gene conversion on nucleotide sequence
composition, and a relationship between chromosomal characteristics and X chromosome inactivation. Comparison of
opossum and eutherian genomes also reveals a sharp difference in evolutionary innovation between protein-coding and
non-coding functional elements. True innovation in protein-coding genes seems to be relatively rare, with lineage-specific
differences being largely due to diversification and rapid turnover in gene families involved in environmental interactions. In
contrast, about 20% of eutherian conserved non-coding elements (CNEs) are recent inventions that postdate the divergence
of Eutheria and Metatheria. A substantial proportion of these eutherian-specific CNEs arose from sequence inserted by
transposable elements, pointing to transposons as a major creative force in the evolution of mammalian gene regulation.

Metatherians (‘marsupials’) comprise one of the three major groups
of modern mammals and represent the closest outgroup to the euthe-
rian (‘placental’) mammals (Supplementary Fig. 1). Metatherians

and eutherians diverged ,180 million years (Myr) ago, long before
the radiation of the extant eutherian clades ,100 Myr ago1,2.
Although the metatherian lineage originally radiated from North
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America, only one extant species can be found there (the Virginia
opossum), whereas all other species are found in South America
(including more than 65 species of opossums and shrew opossums)
and Australasia (,200 species, including possums, kangaroos, koalas
and many small insectivores and carnivores)3.

All sequenced mammalian genomes until now have come from
eutherian species. Although metatherians and eutherians (together,
‘therians’) share many ancient mammalian characteristics, they have
each evolved distinctive morphological and physiological traits.
Metatherians are particularly noted for the birth of young at a very
early stage of development, followed by a lengthy and complex lacta-
tional period. Genomic analysis will help reveal the genetic innova-
tions that underlie the distinctive traits of each lineage4–6.

Equally important, metatherian genomes can shed light on the
human genome. Comparative analysis of eutherians has greatly
improved our understanding of the architecture and functional
organization of mammalian genomes7–10. Identification of sequence
elements thought to be under purifying selection, on the basis of
cross-species sequence conservation, has led to increasingly refined
inventories of protein-coding genes11,12, proximal and distal regula-
tory elements13,14 and putative RNA genes15. Yet, we still know rela-
tively little about the evolutionary dynamics of these and other
functional elements: how stable is the complement of protein-coding
genes? How rapidly do regulatory sequences appear and disappear?
From what substrate do they evolve?

Comparison of the human genome with genomes from distant
outgroups such as birds (divergence ,310 Myr ago) or fish
(,450 Myr ago) has provided valuable information. When similarity
between sequences from such distantly related genomes can be
detected, it surely signals functional importance; but the high spe-
cificity of these signals16 is offset by dramatically reduced sensitiv-
ity10,17,18. Simulations have shown that the feasibility of aligning
orthologous genomic sequences declines rapidly once their mean
genetic distance exceeds 1 substitution per site19. The genome of
chicken, the most closely related non-mammalian amniote genome
available, is separated from the human genome by approximately 1.7
substitutions per site in orthologous, neutrally evolving sequences20.
Even moderately constrained functional elements may therefore be
difficult to detect. In contrast, metatherian mammals are well posi-
tioned to address this issue: because unconstrained regions of their
genomes are separated from that of human by only ,1 substitution
per site (see below), most orthologous, constrained sequence should
be readily aligned.

Here we report the first high-quality draft of a metatherian genome
sequence, which was derived from a female, grey, short-tailed opos-
sum—Monodelphis domestica. The species was chosen chiefly on
the availability and utility of the organism for research purposes.
M. domestica is a small rapidly breeding South American species
that has been raised in pedigreed colonies for more than 25 years
and developed as one of only two laboratory bred metatherians21,22.
M. domestica is being actively used as a model system for investi-
gations in mechanisms of imprinting23–25, immunogenetics26–28, neu-
robiology, neoplasia and developmental biology (reviewed in ref. 6).
For example, newborn opossums are remarkable in that they can heal
complete transections of the spinal cord29. Elucidation of the molecu-
lar mechanisms underlying this ability promise important insights
relevant to regenerative medicine concerning spinal cord or peri-
pheral nerve injuries. Other than human, M. domestica is also the
only mammal known in which ultraviolet radiation is a complete
carcinogen for malignant melanoma30, and this has led to its estab-
lishment as a unique neoplasia model. All of these investigations will
directly benefit from the development of genomic resources for this
species.

Below we describe the generation of the draft sequence of the
opossum genome, analyse its large-scale characteristics, and compare
it to previously sequenced amniote genomes. Our key findings
include:

$ The distinctive features of the opossum genome provide an
informative test of current models of genome evolution and support
the hypothesis that biased gene conversion has a key role in deter-
mining overall nucleotide composition.

$ The evolution of random inactivation of the X chromosome in
eutherians correlates with acquisition of X-inactive-specific tran-
script (XIST), elevation in long interspersed element (LINE)/L1 den-
sity and suppression of large-scale rearrangements.

$ The opossum genome seems to contain 18,000–20,000 protein-
coding genes, the vast majority of which have eutherian orthologues.
Lineage-specific genes largely originate from expansion and rapid
turnover in gene families involved in immunity, sensory perception
and detoxification.

$ Identification of orthologues of highly divergent immune genes
and a novel T-cell receptor isotype challenge previous claims that
metatherians possess a ‘primitive’ immune system.

$ Of the non-coding sequences conserved among eutherians,
,20% seem to have evolved after the divergence from metatherians.
Of protein-coding sequences conserved among eutherians, only
,1% seems to be absent in opossum.

$ At least 16% of eutherian-specific conserved non-coding ele-
ments are clearly derived from transposons, implicating these ele-
ments as an important creative force in mammalian evolution.

Extensions to these findings, as well as additional topics, are
reported in a series of companion papers31–41.

Genome assembly and single nucleotide polymorphism discovery

We sequenced the genome of a partially inbred female opossum using
the whole-genome shotgun (WGS) method7,42. The resulting WGS
assembly has a total length of 3,475 megabases (Mb), consistent with
size estimates based on flow cytometry (,3.5–3.6 Gb; Supplementary
Notes 1–2 and Supplementary Fig. 2). Approximately 97% of the
assembled sequence has been anchored to eight large autosomes
and one sex chromosome on the basis of genetic markers mapped
by linkage analysis38 or fluorescence in situ hybridization43 (FISH;
Supplementary Note 3). The draft genome sequence has high con-
tinuity, coverage and accuracy (Table 1; Supplementary Note 4 and
Supplementary Tables 1–7).

To enable genetic mapping studies of opossum, we also created a
large catalogue of candidate single nucleotide polymorphisms
(SNPs). We identified ,775,000 SNPs within the sequenced indi-
vidual by analysing assembled sequence reads. We identified an addi-
tional ,510,000 SNPs by generating and comparing ,300,000
sequence reads from three individuals from distinct, partially
outbred laboratory stocks maintained at the Southwest Foundation
for Biomedical Research (San Antonio, Texas)22,44 (Supplemen-
tary Note 5). The SNP rates between the different stocks range from

Table 1 | Genome assembly characteristics

WGS assembly (monDom5)
Number of sequence reads 38.8 3 10

6

Sequence redundancy (Q20 bases) 6.83

Contig length (kb; N50*) 108

Scaffold length (Mb; N50) 59.8
Anchored bases in the assembly (Mb) 3,412

Estimated euchromatic genome size{ (Mb) 3,475

Integration of physical mapping data
Scaffolds anchored on chromosomes 216

Fraction of genome in anchored and oriented scaffolds (%) 91

Fraction of genome in anchored, but unoriented, scaffolds (%) 6

Quality control
Bases with quality score $40 (%) 98

Empirical error rate for bases with quality score $40{ (%) 3 3 10
25

Empirical euchromatic sequence coverage{ (%) 99

Bases in regions with low probability of structural error1 (%) 98

* N50 is the size x such that 50% of the assembly reside in contigs/scaffolds of length at least x.
{ Includes anchored bases and spanned gaps (,2%).
{Based on comparison with 1.66 Mb of finished bacterial artificial chromosome (BAC)
sequence.
1 Based on ARACHNE assembly certification (see Supplementary Note 4).
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1 per 360 to 1 per 140 bases and correlate with the distance between
their geographical origins (Supplementary Table 8–10 and Supple-
mentary Fig. 3).

The data from this study, including the draft genome assembly and
SNPs, are freely available on our website (http://www.broad.mit.edu/
mammals/opossum/) and have been deposited in appropriate public
databases.

Genome landscape

The opossum genome has certain unusual properties that provide an
opportunity to test recent models of genome evolution. The opossum
autosomes are extremely large: they range from 257 Mb to 748 Mb,
with the smallest being larger than the largest chromosome prev-
iously sequenced in any amniote (human chromosome 1). In con-
trast, the X chromosome is only ,76 Mb long; this is substantially
less than the size of the X chromosome in any sequenced eutherian.
Studies of G-banding and chromosome painting have also shown
that karyotypes and basic chromosomal organization are extraord-
inarily conserved throughout Metatheria, even between the distantly
related American and Australasian lineages (,55–80 Myr ago)5,45.
Sequence composition. Recent analyses have uncovered two major
trends in the evolution of sequence composition in amniote gen-
omes: first, most modern lineages seem to be experiencing a gradual
decline in total G1C content relative to their common ancestors46;
second, the local rate of recombination is positively correlated with
local G1C content and, even more strongly, with the local density of
CpG dinucleotides20,47. These observations have led to a proposed
model48 whereby sequence composition reflects the balance between
a genome-wide, (A1T)-biased mutation process and a localized
recombination-mediated (G1C)-biased gene conversion process.
This model predicts that the sequence composition of a genomic
region is a function of its historical rate of recombination, with the
frequency of hypermutable CpG dinucleotides being a particularly
sensitive indicator.

The opossum genome fits the predictions of this model well (see
also refs 34, 35). Current linkage data38 show that the average recom-
bination rate for the autosomes (,0.2–0.3 cM Mb21) is lower than in
other sequenced amniotes (0.5–.3 cM Mb21). Consistent with the
proposed model, the mean autosomal G1C content (37.7%) is also
lower than in other sequenced amniotes (40.9–41.8%) and, in par-
ticular, the mean autosomal density of CpGs (0.9%) is twofold lower
than in other amniotes (1.7–2.2%). Because large-scale patterns of
recombination seem to be relatively stable in the absence of chromo-
somal rearrangements49,50, the stability of the opossum karyotype
suggests that the majority of the genome has experienced low re-
combination rates over an extended period. Indeed, the sequence
composition is also more homogeneous than seen in other amniotes
(Fig. 1).

The subtelomeric regions of autosomes are notable outliers with
respect to sequence composition in the opossum genome, provid-
ing additional support for the biased gene conversion hypothesis.
Cytological studies in opossum51,52 suggest that the rate of chiasmata
formation (and hence meiotic recombination) is relatively uniform
across each autosome in males, whereas it is strongly biased to sub-
telomeric regions in females. Consistent with a higher sex-averaged
rate of recombination, mean G1C-content (41.6%) and CpG density
(1.9%) are significantly elevated within ,10 Mb of the chromosome
ends (Supplementary Fig. 4).

Similarly, the very short X chromosome also supports the biased
gene conversion hypothesis. Although few linkage data are currently
available for opossum X chromosome, the average effective recom-
bination rate must be at least 0.44 cM Mb21, and thus larger than for
the autosomes. (This estimate follows from the requirement of at
least one meiotic crossover per bivalent in the female germ-line53,54.)
The mean G1C content (40.9%) and CpG density (1.4%) of the
X chromosome are substantially higher than for any of the autosomes
(Supplementary Table 11). The opossum pattern is thus the opposite
of that seen in eutherians, in which the X chromosome has low
recombination and low G1C content and CpG density (Table 2).
Segmental duplication. In human and other eutherians, segmental
duplications (defined as pairs of regions with $90% sequence sim-
ilarity over $1 kb) are associated with chromosomal fragility and
syntenic breakpoints55,56. The relative karyotypic stability of meta-
therians therefore indicated that they might have a low proportion of
segmental duplications.

The overall proportion of segmental duplication in opossum
(1.7%) is indeed substantially lower than in other sequenced
amniotes (2.5–5.3%). The segmental duplications are also relatively
short: only 22 exceed 100 kb in opossum as compared with 483 in
human (Supplementary Table 12). Additionally, the segmental
duplications are more locally distributed: 76% are intrachromosomal
(versus 46% for human) and the median distance between related
duplications is 175 kb (versus 2.2 Mb for human). We find no indica-
tion that correction for over-collapsed duplications in the assembly
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Figure 1 | Sequence composition in the opossum genome. Distribution of
G1C content in 10-kb windows across the genome in opossum (blue),
human (red), mouse (black), dog (green) and chicken (purple).

Table 2 | Comparative analysis of genome landscape in opossum and other
amniotes

Opossum Human Mouse Dog Chicken

Euchromatic genome size (Mb) 3,475 2,880 2,550 2,330 1,050

Karyotype
Haploid number 9 23 20 39 33

Autosomal size range (Mb) 258–748 47–247 61–197 27–125 5–201

X chromosome size (Mb) 76 155 167 127 NA
Segmental duplications

Autosomal (%) 1.7 5.2 5.3 2.5 10.4
Intrachromosomal duplications (%) 76 46 84 ND ND
Median length between

duplications (Mb)
0.18 2.2 1.6 0.33 0.03

X chromosome (%) 3.3 4.1 13 1.7 NA
Interspersed repeats (%)

Total 52.2 45.5 40.9 35.5 9.4
LINE/non-LTR retrotransposon 29.2 20.0 19.6 18.2 6.5
SINE 10.4 12.6 7.2 10.2 NA
Endogenous retrovirus 10.6 8.1 9.8 3.7 1.3
DNA transposon 1.7 2.8 0.8 1.9 0.8

G1C content (%)
Autosomal 37.7 40.9 41.8 41.1 41.5
X chromosome 40.9 39.5 39.2 40.2 NA

CpG content (%)
Autosomal 0.9 2.0 1.7 2.2 2.1
X chromosome 1.4 1.7 1.2 1.9 NA

Recombination rate (cM Mb21)
Autosomal* ,0.2–0.3 1–2 0.5–1 1.3–3.4{ 2.5–21

X chromosome{ $0.441 0.8 0.3 ND NA

NA, not applicable; ND, no or insufficient data.
* Range of chromosome-averaged recombination rates.
{ See Æhttp://www.vgl.ucdavis.edu/research/canine/projects/linkage_map/data/æ
{ Estimated as 2/3 of the female rate.
1 See text.
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would significantly alter these estimates (Supplementary Note 6 and
Supplementary Table 13).
Transposable elements. Metatherian transposable elements largely
belong to families also found in eutherians, but can be divided into
more than 500 subfamilies, many of which are lineage specific (cata-
logued in Repbase57). At least 52% of the opossum genome can be
recognized as transposable elements and other interspersed repeats
(Table 2)33,35, which is more than in any of the other sequenced
amniotes (34–43%). Notably, the opossum genome is significantly en-
riched in non-long terminal repeat (LTR) retrotransposons (LINEs,
29%), comprising copies of various LINE subfamilies. Given the low
abundance of segmental duplications, accumulation of transposable
elements seems to be the primary reason for the relatively large opos-
sum genome size. The total euchromatic sequence that is not re-
cognized as transposable elements is rather similar in opossum and
human (1638 Mb versus 1568 Mb, respectively). The enrichment of
LINEs may be related to the overall low recombination rate in opos-
sum, inasmuch as studies of eutherian genomes have shown that
LINEs occur at elevated densities in regions with low local recombina-
tion rates47.

Conserved synteny

Identification of syntenic segments between related genomes can
facilitate reconstruction of chromosomal evolution and identifica-
tion of orthologous functional elements. Starting from nucleotide-
level, reciprocal-best alignments (‘synteny anchors’), we found that
the opossum and human genomes can be subdivided (at a resolution
of 500 kb) into 510 collinear segments with an N50 length (size x such
that 50% of the assembly is in units of length at least x) of 19.7 Mb,
which cover 93% of the opossum genome (Supplementary Fig. 5). If
local rearrangements are disregarded, these segments can be further
grouped into 372 blocks of large-scale, conserved synteny.

Extending this analysis to additional eutherians (mouse, rat and
dog), with chicken as an additional outgroup, we created a high-
resolution synteny map that reveals 616 blocks of conserved synteny
across the five fully sequenced mammals (Supplementary Note 7,
Supplementary Figs 6–7 and Supplementary Table 14). Because the
majority of synteny breakpoints between human, mouse, rat and dog
are clearly lineage specific (see also ref. 10), genomic regions that were

probably contiguous in the last common boreoeutherian ancestor
can be inferred by parsimony (Supplementary Note 8). We found
that the mammalian synteny blocks can be used to infer 43 connected
groups in the ancestral boreoeutherian genome (Supplementary Fig.
8). In fact, the largest 30 groups cover 95% of the human genome (see
also ref. 58).

The resulting synteny map can be used to clarify chromosomal
rearrangements during early mammalian evolution. For example,
limited comparative mapping previously revealed that the eutherian
X chromosome contains an ‘X-conserved region’ (XCR) that corre-
sponds to the ancestral therian X chromosome, and an ‘X-added
region’ (XAR), which was translocated from an autosome after the
split from Metatheria59,60. The exact extent of the XCR has been
unclear, however, owing to unclear synteny with non-mammalian
out-groups at its boundary61. Using our high-resolution synteny map
we can now confidently map the XAR–XCR fusion point to 46.85 Mb
on human chromosome band Xp11.3 (Fig. 2).

X chromosome inactivation

In opossum and other metatherian mammals, dosage compensation
for X-linked genes is achieved through inactivity of the paternally
derived X chromosome in females62. In contrast, eutherian dosage
compensation involves inactivation of the paternal X chromosome
at spermatogenesis, reactivation in the early embryo, followed
by random and clonally stable inactivation of one of the two
X chromosomes in each cell of female embryos63. The random in-
activation step is controlled by a complex locus known as the
X inactivation centre (XIC). In the early female embryo, the non-
coding XIST gene is transcribed from the XIC and coats one chro-
mosome, in cis, to initiate silencing of the majority of its genes. It has
been proposed that paternal X chromosome inactivation represents
the ancestral therian dosage compensation system, and that random
X chromosome inactivation is a recent innovation in the eutherian
lineage64,65. The opossum genome sequence provides the first oppor-
tunity to test major hypotheses about the evolution of this system.
No XIST homologue in opossum. We searched all assembled and
unassembled opossum WGS sequence for homology to the human
and mouse XIC non-coding genes but, in agreement with a recent
report66, did not find any significant alignments. (In particular, we
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found no match to the highly conserved 150-bp region overlapping
the critical exon 4 of XIST; this region is so strongly conserved in the
Eutheria that it should be readily detectable if present40.) Analysis of
synteny in the regions surrounding the eutherian XIC also revealed
that it has been disrupted by large-scale rearrangements (Fig. 2)40,41.
In eutherians, the XIC is flanked by the ancient protein-coding genes
CDX4–CHIC1 on one side and SLC16A2–RNF12 on the other side. In
both chicken and frog these four genes are clustered in autosomal
XIC homologous regions (which do not contain homologues of the
XIC non-coding genes66). On the opossum X chromosome, however,
these two pairs of genes are separated by ,29 Mb (compared with
,750 Kb in human). Taken together, the evidence strongly suggests
that XIST is specific to eutherians40,41,66.
The Lyon repeat hypothesis. LINE/L1 elements are of particular
interest to the study of X chromosome inactivation. These transpos-
able elements have been proposed to act as ‘boosters’ for the spread of
X chromosome inactivation in cis from the XIC (reviewed in ref. 67).
This hypothesis is supported in part by the observation that in
human, LINE/L1 density is significantly elevated in the XCR
(33%), where nearly all genes are inactivated, but approximates the
autosomal density in the XAR (19%), where many genes escape
inactivation (Fig. 3)61,68. In mouse, we found that the LINE/L1 den-
sity is elevated in both the XCR (35%) and the XAR (32%), which is
consistent with the observation that genes that escape inactivation on
the human XAR are often inactivated in mouse69. As previously
observed in human68, the LINE/L1 elevation in mouse is particularly
dramatic among recent, lineage-specific subfamilies (Supplementary
Fig. 9).

In contrast to human and mouse, the LINE/L1 density on the
opossum X chromosome (22%) is significantly lower than in the
eutherian XCR, and is in fact slightly less than in the autosomal regions
homologous to the eutherian XAR (23%). This difference between
metatherian and eutherian X chromosomes is not readily explained by
any simple correlation between LINE/L1 density, recombination or
mutation rates. We therefore conclude that LINE/L1 density is
unlikely to be a critical factor for X chromosome inactivation in the
metatherian lineage, and that the approximately twofold increase on
the eutherian X chromosome may be directly related to the acquisition
of XIST and random X chromosome inactivation.
Suppression of large-scale rearrangements. Comparative analyses
have revealed that the structure of the human X chromosome has
remained essentially unchanged since the eutherian radiation10,20,61. A
possible reason is that the requirement for XIST transcripts to spread
across the chromosome from a central location has led to selection
against structural rearrangements. For example, translocation of
LINE/L1-poor XAR segments into the XCR could potentially disrupt
inactivation at more distal loci. Consistent with this hypothesis, our
synteny map reveals that the XAR and XCR homologous regions have
experienced several major rearrangements both in the opossum lin-
eage (,15 lineage-specific synteny breakpoints) and in the eutherian
lineage before the eutherian radiation (,9 lineage-specific break-
points; Supplementary Table 15). The low rate of rearrangements
in the human lineage is therefore unlikely to be due to functions or

sequences that were present on the ancestral therian X chromosome,
or in early eutherian evolution.

We note that unlike in human, the mouse X chromosome has
experienced several rearrangements (with 15 lineage-specific synteny
breakpoints), such that the XAR and XCR are no longer two separate
segments. This would be consistent with the more comprehensive
inactivation in the mouse imposing weaker constraints on rearrange-
ment. Although little is known about the extent of X chromosome
inactivation in dog or rat, their X chromosomes are also consistent
with this hypothesis. The dog X chromosome is collinear with human
and is enriched for LINE/L1 only in the XCR (33.4% versus 16.8%
for the XAR). The rat X chromosome has accumulated ,4 lineage-
specific synteny breakpoints after the divergence from mouse61, and
is similarly enriched for LINE/L1 in both the XCR (36.7%) and the
XAR (34.5%).

Genes

The gene content of metatherian and eutherian genomes provides
key information about biological functions. We analysed the gene
content of the opossum genome and compared it with that of the
human genome. We focused on instances of rapid divergence and
duplication of protein-coding genes, which have led to lineage-spe-
cific gene complements70.
Gene catalogue. We generated an initial catalogue of 18,648 pre-
dicted protein-coding genes and 946 non-coding genes (primarily
small nuclear RNA, small nucleolar RNA, microRNA and ribosomal
RNA) in opossum34 (Supplementary Note 9 and Supplementary
Data). Regularly updated annotations can be obtained from public
databases (http://www.ensembl.org and http://genome.ucsc.edu).

We next characterized orthology and paralogy relationships
between predicted protein-coding genes in opossum and human11

(Table 3). We could identify unambiguous human orthologues for
15,320 (82%) of the opossum predicted genes, with 12,898 cases
having a single copy in each species (1:1 orthologues). Notably, we
identified orthologues of key T-cell lineage markers such as CD4 and
CD8, which had not been successfully identified by cloning in
metatherian species39. Most (2,704) of the remaining genes are
homologous to human genes, but could not be assigned to ortholo-
gous groups with certainty.

A small number (624) of predicted opossum genes have no clear
homologue among the human gene predictions. Inspection revealed
that most of these are short (median length of 120 amino acids,
compared with 445 for 1:1 orthologues) and probably originate from
pseudogenes or spurious open reading frames. Only eight currently
have strong evidence of representing functional genes without homo-
logues in humans (Supplementary Table 16). These include CPD-
photolyase, which is part of an ancestral photorepair system still
active in opossum71, malate synthase72 and inosine/uridine hydro-
lase. The latter two are ancient genes not previously identified in a
mammalian species.

Conversely, approximately ,1,100 current gene predictions from
human have no clear homologue in the initial opossum catalogue
(Supplementary Data). Of these, ,620 can be at least partially
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Table 3 | Opossum and human gene predictions and projected gene counts

Protein-coding genes Opossum

Initial predictions 18,648

Orthologues in human* 15,320

1:1 12,898

Many:1 1,016

1:Many 451

Many:Many 582

Homologues in human, but unclear orthology{ 2,704

No predicted homologues in human 624

Projected total{ 18,000–20,000

* Includes some cases where multiple transcripts have inconsistent phylogenies, or where the
predicted orthologue is a putative pseudogene.
{ Includes members of highly duplicated gene families.
{Accounting for missed annotations in opossum and removal of probable pseudogenes.
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aligned to the opossum genome and may not have been annotated as
genes owing to imperfections in the draft assembly or high sequence
divergence. In particular, manual re-annotation identified ortholo-
gues of several rapidly evolving cytokines39. The remaining predic-
tions are dominated by gene families known to have undergone
expansion and rapid evolution in the human lineage, such as
b-defensins and cancer-testis antigens. On the basis of our compar-
ison, we conclude that the opossum genome probably contains
,18,000–20,000 protein-coding genes, with the vast majority having
eutherian orthologues.
Divergence rates among orthologues. We calculated the synonym-
ous substitution rate (KS; substitutions that do not result in amino
acid change because of codon redundancy) of 1:1 opossum–human
orthologues to approximate the unconstrained divergence rate
between the species7,10. The median value of KS is 1.02. Consistent
with expectation, this value is substantially smaller than the chicken–
human KS value (1.7), with the ratio being very close to the ratio of
prior estimates of the divergence times for the two lineages
(,180 Myr ago for opossum and ,310 Myr ago for chicken).

Notably, the median KS for orthologues located on the XCR is
significantly elevated relative to orthologues located on autosomes
in both species (1.2 versus 1.0; P , 1023; see also refs 34, 35). This is
the opposite to what is observed within Eutheria10, but is consistent
with the expectation that the higher G1C-content and recombina-
tion rate on the opossum X chromosome relative to its autosomes
implies a higher rate of mutation47. A similar elevation can also be
detected in subtelomeric regions34.
Innovation and turnover in gene families. We next studied the
evolution of gene family expansions in the metatherian lineage.
The opossum gene catalogue contains 2,743 (15%) genes that have
probably been involved in one or more duplication or gene conver-
sion event since the last common ancestor with eutherian mammals,
as inferred from low KS between the copies (median 5 0.41). The
number of duplications is one-third fewer than the number of
human lineage-specific duplications (4,037; 20%), which may reflect
the lower rate of segmental duplication in the opossum genome.

We found a large number of lineage-specific copies of genes
involved in sensory perception, such as the c-crystallin family of
eye lens proteins73, and taste, odorant74 and pheromone receptors.
Other major lineage-specific duplications were found in the rapidly
evolving KRAB zinc-finger family, and in genes related to toxin
degradation and dietary adaptations, including cytochrome P450
and various gastric enzymes (see also ref. 34).

Innovation in the innate and adaptive immune systems is visible
through substantial duplication or gene conversion involving the
leukocyte receptor and natural killer complexes, immunoglobulins,
type I interferons and defensins32,39. The opossum genome also con-
tains a new T-cell receptor isotype that is expressed early in ontogeny,
before conventional T-cell receptors, and may provide early immune
function in the altricial young37.

The opossum also shows some surprising gene family expansions
that are without precedent in other vertebrates. Notable among these
are multiple duplications of the nonsense-mediated decay factors
SMG5 and SMG6, and the pre-mRNA splicing factors, KIAA1604
and PRP18. The opossum genome also harbours two adjacent para-
logous copies of DNA (cytosine-5)-methyltransferase 1 (DNMT1),
which catalyses methylation of CpG dinucleotides. It will be inter-
esting to discover if specialized functions have been adopted by these
paralogous genes.

The patterns of evolution among duplicated genes largely mirror
those observed in eutherians34,70. The set of opossum paralogues
is strongly biased towards recent duplications (KS , 0.1) and in gen-
eral have accumulated a disproportionately high number of non-
synonymous mutations (Fig. 4). The median intraspecies ratio of
nonsynonymous to synonymous substitution rates (KA/KS) between
paralogues is 0.51, which is sixfold higher than the interspecies ratio
seen for 1:1 orthologues (0.086). This is consistent with the rapid

gene birth and death model75, which predicts that duplicated genes
either undergo functional divergence in response to positive selection
or rapidly degenerate owing to lack of evolutionary benefit.

Conserved sequence elements

The most surprising discovery to emerge from comparative analyses
of eutherian genomes is the finding that the majority of evolution-
arily conserved sequence does not represent protein-coding genes,
but rather are conserved non-coding elements (CNEs)7,10. The opos-
sum genome provides a well-positioned outgroup to study the origin
and evolution of these elements.

For simplicity, we will refer to sequence elements as ‘amniote
conserved elements’ if they are conserved between chicken and at
least one of opossum or human; ‘eutherian conserved elements’ if
they are conserved between human and at least one of mouse, rat or
dog; and ‘eutherian-specific elements’ if they are eutherian conserved
sequence absent from both opossum and chicken. (‘Metatherian-
specific elements’ surely also exist, but cannot be identified without
additional metatherian genomes.)
Loss of amniote conserved elements in mammals. We first studied
the extent to which amniote conserved elements have been lost in
the human lineage. We focused on ,133,000 conserved intervals
between opossum and chicken (68 Mb), ,50% of which overlaps
protein-coding regions (Supplementary Data).

Nearly all (97.5%) of these amniote conserved elements can be
aligned to the human genome (Fig. 5a). We reasoned that some of
the remainder might be orthologous to sequence that lies within gaps
in the current human assembly, or which had been missed by the
initial genome-wide alignment. We therefore repeated the analysis,
focusing only on amniote elements present in opossum and occur-
ring in ‘ungapped intervals’ (that is, syntenic intervals between
human and opossum that have no sequence gaps); the ungapped
intervals contain 63% of all conserved elements.

We found that 99.0% of amniote elements in ungapped intervals
could be unambiguously aligned to the human genome. The remain-
ing 1.0% of amniote elements could not be found even by a more
sensitive alignment algorithm (Fig. 5b), and thus seem to have been
lost in the human lineage.
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We also performed the converse analysis, by aligning the human
and chicken genomes to identify amniote conserved elements poten-
tially lost in opossum. The results were similar, with 99.4% of ele-
ments in ungapped intervals being readily aligned to opossum.

We conclude that the vast majority of amniote conserved elements
encode such fundamental functions that they cannot be lost in either
eutherians or metatherians. Nonetheless, the small fractions that
have been lost correspond to more than 1,400 elements in total; it
will be interesting to investigate their function and the consequence
of their loss. Notably, although protein-coding sequence comprises
50% of all amniote conserved elements, they comprise only 4% of the
elements lost in one of the lineages.
Eutherian-specific conserved elements. We next explored the
appearance of novel conserved elements in the lineage leading from
the common therian ancestor to the boreoeutherian ancestor, which
could shed light on the origin of such elements in general. We identified
a collection of eutherian conserved elements that cover 104 Mb (3.7%)
of the human genome, using the phylo-HMM approach14; ,29% of
them overlap protein-coding sequence (Supplementary Data).

Only a small proportion of human conserved protein-coding
sequences could not be aligned to the opossum genome (1.1% in
ungapped regions; Fig. 5c). In contrast, a much larger proportion
of human non-coding elements seem to be eutherian specific (20.5%
in ungapped regions). Taking the results from ungapped syntenic
intervals as a conservative estimate for the proportion of total
innovation, we conclude that approximately 14.8 Mb (1.1% of
30 Mb of coding sequence and 20.5% of 74 Mb of CNEs) of the
eutherian conserved elements are eutherian specific.

The amount of apparent innovation is highest among short and
moderately conserved elements (median length of 37 bp; median
log2-odds score 5 22), probably reflecting, in part, that shorter ele-
ments may more readily diverge beyond recognition (see also refs 36,
76). Nonetheless, substantial innovation is apparent even among
elements that are relatively long and unambiguously conserved
within Eutheria. For example, the proportion of eutherian-specific
elements is 8.1% among CNEs with log2-odds score $ 60, which have
a median length of 197 bp (Fig. 5d).
Lineage-specific CNEs correspond to functional elements. To
establish the biological relevance of lineage-specific CNEs, we exam-
ined the overlap of eutherian and amniote CNEs with two disparate
sets of experimentally identified functional elements. If the euther-
ian-specific CNEs were enriched for false-positive predictions, we
would expect them to be substantially under-represented among
these functional elements.

We first considered a set of known human microRNAs
(miRNAs)77. Of the 51 miRNAs that overlap amniote CNEs, only
one (hsa-mir-194-1; ref. 78) seems to have been lost in opossum
(Fig. 5e). (The mature form of this miRNA is identical to a second
conserved miRNA, hsa-mir-194-2, which does have an opossum
orthologue; this apparent redundancy may have made it more sus-
ceptible to lineage-specific loss.) Of the 183 miRNAs that overlap
eutherian CNEs in ungapped syntenic regions, 27 (15%) correspond
to eutherian-specific elements (Supplementary Data). An example is
an 87-bp eutherian-specific CNE corresponding to hsa-mir-28; it has
previously been detected by northern blot analysis in human and
mouse, but not in any non-mammalian species79.
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Figure 5 | Lineage-specific conserved sequence elements. a, Phylogenetic
distribution of amniote conserved elements. b, Distribution for alignment
scores of amniote elements, represented by opossum (human), to ungapped
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lineage-specific (orange) elements, and randomly permuted sequences of the
same length and base composition (green). Ungapped syntenic intervals are
flanked by two synteny anchors (white) and contain no assembly gaps
(inset). Md, Monodelphis domestica; Hs, Homo sapiens; Gg, Gallus
gallus. c, Phylogenetic distribution of eutherian conserved elements.
d, Distribution of alignment scores for eutherian CNEs (log2-odds

score $ 60), represented by human, to ungapped syntenic intervals in the
opossum genome, for shared (blue) and eutherian-specific (red) elements,
and randomly permuted sequences of the same length and base composition
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We next considered a genome-wide set of DNase hypersensitive sites
from human lymphocytes, which represent a variety of putative reg-
ulatory elements80. Of the 290 sites that overlap amniote CNEs present
in human, none overlaps instances that are lost in opossum. Of the
2,041 sites that overlap eutherian CNEs in ungapped syntenic regions,
407 (20%) exclusively overlap eutherian-specific elements (Supplem-
entary Data). An example is a 269-bp eutherian-specific CNE in
intron 2 of the apoptosis regulator BCL2, which overlaps a DNase
hypersensitive site, suggesting it has a cis-regulatory function (Fig. 5f).

The fraction of eutherian CNEs overlapping DNase hypersensitive
sites that are eutherian specific is strikingly similar to the fraction of
all conserved non-coding sequence that is eutherian specific (20.5%).
The fraction of miRNAs that correspond to eutherian-specific CNEs
is slightly lower (15%), which is consistent with their higher average
conservation scores. In particular, the results provide strong evidence
that the majority of eutherian-specific CNEs are likely to be genuine
functional elements.
Lineage-specific CNEs associated with key developmental genes.
We next explored the distribution of lineage-specific CNEs across the
human genome. Overall, there is a strong regional correlation
between the density of eutherian CNEs shared with opossum and
the density of eutherian-specific CNEs (Spearman’s r 5 0.82 for
1-Mb windows; Fig. 6). The densities of amniote CNEs present or
lost in opossum are also positively correlated (Spearman’s r 5 0.30).

Previous studies have shown that both eutherian and amniote
CNEs are enriched in certain large, gene-poor regions surrounding
genes that have key roles in development, primarily encoding tran-
scription factors, morphogens and axon guidance receptors10,81,82.
For example, 35% of all eutherian CNEs and 49% of all amniote
CNEs (in ungapped syntenic regions) lie within the 204 largest clus-
ters of CNEs in the human genome (described in ref. 10). The ,240
key developmental genes in these regions have relatively low rates
of amino acid divergence (median KA/KS 5 0.03) and show little
evidence of lineage-specific loss or duplications. In contrast, we
found that the rate of gain and loss of CNEs in the same regions is
only moderately (,30%) lower than elsewhere in the genome.
Indeed, we identified more than 37,000 lineage-specific CNEs in
these developmentally important regions.

Because experimental studies of CNEs in these regions have fre-
quently uncovered cis-regulatory functions affecting the nearby develop-
mental genes16,82–85, the substantial innovations in these regions are
candidates for genetic changes underlying differential morphological
and neurological evolution in mammalian lineages. This pattern would
be consistent with the notion that modification of regulatory networks
has been a major force in the evolution of animal diversity86–88.
Eutherian-specific CNEs derived from transposable elements. In
general, each eutherian-specific element must have arisen by one of
three mechanisms: (1) divergence of an ancestral functional element

to such an extent that its similarity is no longer detectable; (2)
duplication of an ancestral functional element giving rise to an ele-
ment without a 1:1 orthologue in other clades; or (3) evolution of a
novel functional element from sequence that was absent or non-
functional in the ancestral genome.

The first mechanism is not likely to account for most of the euther-
ian-specific CNE sequence, at least among those with high conser-
vation scores—if an ancient functional element underwent such
rapid divergence at some point in the eutherian lineage that it is no
longer detectable, then there should be concomitant ‘loss’ of an
amniote conserved element. But, lineage-specific loss seems to be
relatively rare for both amniote elements, as shown above, and for
eutherian elements10.The majority of eutherian-specific conserved
elements therefore probably arose after the metatherian divergence,
either by adaptive evolution of new or previously non-functional
sequence, or by duplication of ancestral elements.

One intriguing source for eutherian-specific CNEs is transposable
elements. A number of researchers have argued that transposable
elements offer an obvious and ideal substrate for the evolution of
lineage-specific functions89–93. Transposable elements contain a vari-
ety of functional subunits that can be exapted and modified by the
host genome89,91, and they can mediate duplication of existing CNEs
to distant genomic locations through transduction or chimaerism92.
Individual instances of CNEs derived from transposable elements
have been described previously14,94,95. However, these cases together
comprise only a trivial fraction of the CNEs in the human genome. It
has thus been unclear whether the evolution of CNEs from transpos-
able elements represents a general mechanism or a rare exception.

When we examined the set of eutherian-specific CNEs, we found a
striking overlap with transposable elements. In ungapped syntenic
intervals, at least 16% of eutherian-specific CNEs overlap currently
recognized transposable elements in human. The fraction is similar
(14%) if we focus only on the most highly conserved elements
(phylo-HMM log2-odds score) $ 60, see above). The overlapping
transposable elements originate from most major transposon fam-
ilies found in eutherians (Table 4), and are not clearly differentiated
from other CNEs in terms of distribution across the genome. This
implies that transposable-element-mediated evolution has been a
significant creative force in the emergence of recent CNEs. The fact
that sequences from transposable elements themselves can be iden-
tified within these CNEs also implies that exaptation of at least a
portion of the transposable element, rather than simply incidental
transduction of adjacent sequence, has been a frequent occurrence.

In contrast, the eutherian CNEs that are present in opossum (and
thus are more ancient) only rarely show overlap with recognizable
transposable elements (,0.7%). We speculate that many of these
CNEs also arose from transposable elements, but that they are difficult
to recognize as such owing to substantial divergence. In fact, three large
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families of ancient paralogous CNEs have recently been discovered
that were clearly distributed around the genome as parts of transpos-
able elements96–98. In each case, only a minority of the family members
still retain evidence of transposon-like features. We also previously
described ,100 smaller CNE families that pre-date the eutherian radi-
ation, but which had no members associated with known transposable
elements98. For all but two of these families, we can find orthologues in
the opossum genome for the majority of their members (Supplemen-
tary Note 10 and Supplementary Fig. 10). Moreover, closer inspection
reveals previously unrecognized transposon-like features in several of
these and other ancient CNE families33.

Strikingly, the proportion of eutherian-specific CNEs recognizable
as transposable-element-derived (16%) is very similar to the propor-
tion of the total aligned sequence between the human, mouse and dog
genomes recognizable as ancestral transposable elements (,17% of
,812 Mb; the vast majority of which is inactive)10. It is widely sus-
pected that the latter proportion is a significant underestimate owing to
the difficulty of recognizing transposable elements that inserted more
than ,100–200 Myr ago7,33. In cases where the transposable-element-
related sequence hallmarks are not essential to the subsequent CNE, or
where evolution of a new function did not follow immediately after the
transposable element insertion, exapted sequences would be expected
to have diverged to the point that they can no longer be readily recog-
nized at a rate similar to inactive insertions. Because this seems to have
occurred for most of the families of ancient CNEs described above, it is
likely that the proportion of all eutherian (not just eutherian-specific)
CNEs derived from transposable elements is substantially higher than
the observed proportion of 16%.

Conclusions

The generation of the first complete genome sequence for a marsupial,
Monodelphis domestica, provides an important resource for genetic
analysis in this unique model organism, as well as the first reference
sequence for metatherian mammals. Our initial results demonstrate
the usefulness of this sequence for comparative analyses of the archi-
tecture and functional organization of mammalian genomes.

The relationship of sequence composition, segmental duplications
and transposable element density with the large and stable karyotype

of the opossum genome has provided new support for an emerging,
general model of chromosome evolution in mammals. In addition,
comparison of the opossum and eutherian X chromosomes revealed
that the evolution of random X chromosome inactivation correlates
with acquisition of XIST, elevation in LINE/L1 density and suppres-
sion of large-scale rearrangements.

Comparative analysis of protein-coding genes showed that the
eutherian complement is largely conserved in opossum. Lineage-
specific genes seem to be largely limited to gene families that are
rapidly turning over in all mammals, although improved annotations
that do not rely on homology to distant species will be required to
complete the opossum gene catalogue. Identification of a wide array
of both conserved and lineage-specific immune genes is particularly
notable because limited success in isolating these genes by cloning has
led to claims that the metatherian immune system is relatively ‘prim-
itive’. Availability of the genome sequence now facilitates more sys-
tematic study of the metatherian immune response39.

At timescales longer than the characteristic time of loss for gene
duplications, it is clear that innovation in non-coding elements
has been substantially more common relative to protein-coding
sequences, at least during eutherian evolution. The opossum genome
sequence has provided the first estimate of the genome-wide rate of
CNE innovation in eutherian evolution, as well as identification of
tens of thousands of lineage-specific elements. It has also provided
evidence that exaptation of transposable elements has a much
greater role in the evolution of novel CNEs than has been previously
realized.

Sequencing of additional metatherian genomes would be helpful
for extending our results by allowing detection of metatherian-
specific coding and non-coding elements. In addition, sampling of
both the American and Australasian lineages would allow the recon-
struction of the genome of their common ancestor, which would
complement ongoing efforts for the boreoeutherian ancestral gen-
ome58. The shorter genetic distance between the ancestral metather-
ian and boreoeutherian genomes (,0.6–0.7 substitutions per site)
would facilitate a more comprehensive analysis of short and weakly
conserved functional elements, for which the phylogenetic distri-
bution and evolutionary origins are still difficult to ascertain.

METHODS SUMMARY
WGS sequencing and assembly. Approximately 38.8 million high-quality

sequence reads were assembled using an interim version of ARACHNE21

(http://www.broad.mit.edu/wga/).

SNP discovery. The SNP discovery was performed using ARACHNE and

SSAHA-SNP99. Linkage disequilibrium was assessed using Haploview100.

Genome alignment and comparisons. Synteny maps were generated using

standard methods7,10.

Gene prediction and phylogeny. Opossum protein-coding and non-coding RNA

genes were predicted using a modified version of the Ensembl genebuild pipe-

line101, followed by several rounds of refinement using Exonerate102 and manual

curation. Orthology and paralogy were inferred using the PhyOP pipeline11,34.

Conserved element prediction. Amniote conserved elements were inferred

from pairwise BLASTZ alignment blocks with more than 75% identity

for $100 bp. Eutherian conserved elements were inferred using phastCons14.

Eutherian elements that did not fall within a 10-kilobase or longer synteny

‘net’103 were ignored.

Phylogeny of conserved elements. For amniote conserved elements, pairwise

best-in-genome BLASTZ alignments of opossum to human and vice versa were

used to infer their phylogenetic distributions. For eutherian conserved elements,

concomitant BLASTZ/MULTIZ alignments to opossum and chicken were used.

A conserved element was called absent from a species if it was not covered by a

single aligned nucleotide in the relevant alignment.

Correction for assembly gaps and initial alignment artefacts. A conserved

element was considered to be in an ungapped syntenic interval if it was flanked

by two synteny anchors within 200 kb on the same contigs in both the human and

opossum assemblies. All conserved elements in ungapped syntenic intervals were

realigned using water (http://emboss.sourceforge.net). Putatively eutherian-

specific elements, including XIST, were also searched against all opossum

sequencing reads using MegaBLAST.

Table 4 | Eutherian-specific conserved non-coding elements derived from
transposons

Transposon family All log
2
-odds score $ 60

Number of
CNEs*

Overlapped
length (kb){

Number of
CNEs*

Overlapped
length (kb){

SINE/MIR 9,617 364 363 49

LINE/L1 6,619 286 194 36

LINE/L2 7,616 303 290 47

LINE/CR1 2,520 136 203 36

LINE/RTE 867 48 56 11

LTR/MaLR 1,995 65 25 3.7
LTR/ERV1 140 5.1 1 0.2
LTR/ERVL 992 36 12 2.8

DNA/Tip100 242 9.3 2 0.6
DNA/MER1_type 2,427 93 54 9

DNA/MER2_type 113 5.3 4 0.9
DNA/Tc2 162 8.5 6 1.4
DNA/Mariner 250 14.6 20 3.3
DNA/AcHobo 151 5.1 3 0.3

Unknown (MER121) 49 4 10 1.6

Total 33,760 1,383 1,243 203

Fraction of overlapped CNEs 16% 14%

* Number of eutherian-specific CNEs in ungapped syntenic regions overlapping annotated
transposable elements.
{Total length of annotated transposable element sequence overlapping the CNEs (this is less
than the total length of CNEs overlapping transposable element sequence).
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Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
WGS sequencing and assembly. Approximately 38.8 million high-quality

sequence reads were derived from paired-end reads of 4- and 10-kb plasmids,

fosmid and BAC clones, prepared from primary tissue DNA from a single female

opossum. The reads were assembled using an interim version of ARACHNE21

(http://www.broad.mit.edu/wga/). No comparative data were used in the assem-

bly process. An intermediate assembly (monDom4) was used for the majority of

the analyses reported here. The most recent version (monDom5) has identical

sequence content and scaffold structure, but includes additional FISH data as

described in Supplementary Note 2.

SNP discovery. The SNP discovery was performed using ARACHNE by com-

parison of the two haplotypes derived from the opossum assembly using only

high-quality discrepancies supported by two or more reads each. Sequence reads

from three additional individuals were also aligned to the reference assembly,

and SNPs were discovered using SSAHA-SNP99. Linkage disequilibrium was

assessed using Haploview100.

Genome alignment and comparisons. The assembly versions used in all com-

parative analyses were hg17 or hg18 (human), mm8 (mouse), rn4 (rat), canFam2

(dog), monDom4 or monDom5 (opossum) and galGal3 (chicken). The number

of aligned nucleotides was counted directly from unfiltered, pairwise BLASTZ

alignments (obtained from http://genome.ucsc.edu). Synteny maps were gener-

ated using standard methods7,10, starting from 320,000 reciprocal-best syntenic

anchors identified by PatternHunter104 (see Supplementary Note 7). Reconstruc-

tion of the boreoeutherian ancestral karyotype is described in Supplementary

Note 8.

Gene prediction and phylogeny. Opossum protein-coding and non-coding

RNA genes were predicted using a modified version of the Ensembl genebuild

pipeline101, followed by several rounds of refinement using Exonerate102 and

manual curation. Orthology and paralogy were inferred using the PhyOP pipe-

line with all predicted opossum and human (Ensembl v40) gene transcripts as

input and KS as the distance metric11,34. Coding regions were aligned according to

their amino acid sequences using BLASTP. KA and KS were estimated using the

codeml program105, with default settings and the F3X4 codon frequency model.

Functional categories were identified using the Gene Ontology106.

Conserved element prediction. Amniote conserved elements were inferred

directly from pairwise BLASTZ alignments of chicken to opossum or human.

Every alignment block with more than 75% identity for $100 bp was classified as

an amniote conserved element. Eutherian conserved elements were inferred

using phastCons14 on BLASTZ/MULTIZ107,108 alignments of human to mouse,

rat and dog. The nonconserved model was fitted to fourfold degenerate sites

from 15,900 human RefSeqs projected onto the same alignments, using phyloFit

and REV. A separate model was fitted for the X chromosome. The scaling para-

meter for the conserved model was estimated by phastCons. Target coverage and

expected element length were set to 12.5% and 12 bp, respectively. Predicted

eutherian conserved elements that did not fall within a 10-kb or longer synteny
‘net’103 between human, mouse and dog were ignored. The coding status of each

element was inferred from $1 nucleotide overlap with entries in the UCSC

human ‘known genes’ track109. Proportions are reported out of the total length

of the elements considered. Eutherian CNEs were classified as transposable-

element-derived if they showed more than 20% nucleotide overlap (med-

ian 5 100% for all elements, 54% for elements with log2-odds score $ 60) with

human RepeatMasker annotations.

Phylogeny of conserved elements. For amniote conserved elements, pairwise

best-in-genome BLASTZ alignments of opossum to human and vice versa were

used to infer their phylogenetic distributions. For eutherian conserved elements,

concomitant BLASTZ/MULTIZ alignments to opossum and chicken were used.

A conserved element was called absent from a species if it was not covered by a

single aligned nucleotide in the relevant BLASTZ alignment.

Correction for assembly gaps and initial alignment artefacts. A conserved

element was considered to be in an ungapped syntenic interval if it was flanked

by two PatternHunter synteny anchors within 200-kb of each other on the same

contigs in both the human and opossum assemblies. All conserved elements

(represented by human or opossum, as appropriate) in ungapped syntenic inter-
vals were realigned to the unmasked genome sequence (in opossum or human)

using the water program (http://emboss.sourceforge.net) with default para-

meters and a gap extension penalty of 4. A randomly permuted version of each

element was also realigned. For amniote conserved elements, only the longest

interval with $75% identity from within the originating alignment block (see

above) was realigned. Amniote elements were called lost, and eutherian elements

were called eutherian-specific if their Smith–Waterman realignment score,

divided by the length of the element, did not exceed the corresponding score

for the permuted element plus one. (Conservatively calling an element found if

its score simply exceeded the score of the permuted element resulted in 15% of

eutherian CNEs in ungapped regions and 8% of those with log2-odds score $ 60

being called eutherian-specific.) Putatively eutherian-specific elements, includ-

ing XIST, were also searched against all opossum sequencing reads using dis-

contiguous MegaBLAST.
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